2 Commits

Author SHA1 Message Date
13ee43167e début de la classe PiecesFile 2025-02-28 22:32:51 +01:00
26f501f7e8 mis en place la PR de simon sur les couleurs 2025-02-28 18:42:04 +01:00
32 changed files with 835 additions and 689 deletions

View File

@@ -28,8 +28,8 @@ Moving and soft dropping can be held but hard dropping, holding and rotating nee
In a general sense, we try to be kind to the players. Some of the following mechanics are just standards in a lot of stacker games, while other have been added because of this game using polyominos of high sizes and thus being way harder to play.
When a piece touches the ground, there is a short time period before she automatically locks. This period is called _lock delay_. Lock delay is reset everytime the piece move. To not allow for infinite stalling, there is another longer period called _forced lock delay_ that does not reset when moving the piece.
The player as a hold box in which they can temporarly store a piece. In this game, we allow the player to swap between the held piece and the active piece as much as they want. Once again to not allow for infinite stalling, forced lock delay does not reset when holding a piece.
When a piece touches the ground, there is a short time period before it automatically locks. This period is called _lock delay_. Lock delay is reset everytime the piece move. To not allow for infinite stalling, there is another longer period called _forced lock delay_ that does not reset when moving the piece.
The player has a hold box in which they can temporarly store a piece. In this game, we allow the player to swap between the held piece and the active piece as much as they want. Once again to not allow for infinite stalling, forced lock delay does not reset when holding a piece.
If either holding or rotating happens during frames where no piece is in the board, they will be memorized and immediately applied upon spawning the next piece. This can sometime prevent the player from loosing when the default spawn would have lost the game. This is called IRS and IHS, for Instant Rotation/Hold System.
IRS and IHS will fail if they actually loose the player the game when it would have not happened otherwise. In the same sense, holding always fails if it would loose the game.
@@ -42,26 +42,26 @@ This concept works very well for games with up to tetrominos or pentominos, but
Since this game uses polyomino of high sizes which are very unplayable, we will try to be complaisant to the player and allow as much kicking spots as possible, while trying not to make him feel like the piece is going through walls. To solve this problem, this game introduce a new Rotation System called **AutoRS**, which does not have a predetermined list of spots to fit the piece but instead adapt to its shape. Its algorithm goes as follow:
1. Before rotating, mark every cell containing the piece or touching the piece, we will call the set of all theses cells the ``safeCells``
1. Before rotating, mark every position containing the piece or touching the piece, we will call the set of all theses positions the ``safePositions``
2. Rotate the piece, if it fit stop the algorithm
3. Try fitting the piece, going from the center to the sides, that means we try to move the piece 1 cell right, then 1 cell left, then 2 cell right, etc. until it fit (and then stop the algorithm), if at one point a position doesn't touch one of the ``safeCells`` we stop trying in this direction
4. Move the piece one line down, and repeat step 3 again, until we hit a line were the first position (shifted by 0 cells horizontally) touched none of the ``safeCells``
3. Try fitting the piece, going from the center to the sides, that means we try to move the piece 1 position right, then 1 position left, then 2 position right, etc. until it fit (and then stop the algorithm), if at one point a position doesn't touch one of the ``safePositions`` we stop trying in this direction
4. Move the piece one line down, and repeat step 3 again, until we hit a line were the first position (shifted by 0 positions horizontally) touched none of the ``safePositions``
5. Do the same as step 4 but now we move the piece one line up every time
6. Cancel the rotation
## Detecting spins
Another common mechanic of stacker games that goes alongside kicking is spinning. A spin is a special move (a move is calculated once a piece has been locked to the board) which usually happen when the last move a piece did was a kick or a rotation and the piece is locked in place, but the rules varies a lot from game to game.
Another common mechanic of stacker games that goes alongside kicking is spinning. A spin is a special move (a move is calculated once a piece has been locked to the board) which usually happen when the last move a piece did was a kick or a rotation and the piece is locked in place or is locked in certain corners, but the rules varies a lot from game to game.
Since we deal with a great deal of different size and shapes, the rules for spin dectection have been simplified greatly:
Since we work with a great deal of different size and shapes, the rules for spin dectection have been simplified greatly:
- A move is a _spin_ if the piece is locked in place, that is it can't be moved one cell up, down, left or right without hitting a wall
- A move is a _spin_ if the piece is locked in place, that is it can't be moved one position up, down, left or right without hitting a wall
- A move is a _mini spin_ if the move isn't a spin and the last action of the piece was a kick (dropping down because of gravity counts as an action)
## Score calculation
- For every cell soft dropped, add 1 to the score
- For every cell hard dropped, add 2 to the score
- For every position soft dropped, add 1 to the score
- For every position hard dropped, add 2 to the score
- When clearing one line, add 100 to the score, 200 for 2 lines, 400 for 3 lines, 800 for 4 lines, 1600 for 5 lines, etc.
- If the line clear is a spin, count the score like a normal clear of 2x more line (200 for 1-line spin, 800 for 2, 3200 for 3, etc.)
- When performing a spin, a mini spin, or clearing 4 or more lines, B2B is activated, every subsequent line clear that is a spin, a mini spin, or clear 4 or more lines, scores twice as much

View File

@@ -2,9 +2,9 @@
## What are polyominos ?
In this game, pieces are represented as a polyomino with a color.
In this game, pieces are represented as a polyomino and a block type.
Polyominos are mathematical objects consisting of multiple edge-touching squares.
There must be a path from every cell to every other cell, going from square to square only through the sides and not the corners.
There must be a path from every square to every other square, going from square to square only through the sides and not the corners.
Polyominos can be classified in 3 ways:
- Fixed polyominos : only translation is allowed
@@ -13,33 +13,36 @@ Polyominos can be classified in 3 ways:
For more detailed informations about polyominos, check the [Wikipedia page](https://en.wikipedia.org/wiki/Polyomino).
Most stacker game uses one-sided polyominos, which results in 7 polyominos of size 4, also known as tetrominos.
Most stacker game uses all one-sided polyominos of size 4 (called tetrominos), which results in 7 distinct polyominos.
In this game too, one-sided polyominos will be used since we will only allow to move and rotate the pieces.
Internally, Polyominos are represented as a set of Cell.
This means the cells can be in any order but can't be duplicates.
A cell is simply a position on a 2D grid, so a polyomino is determined by the position of its cells.
This means however that 2 polyominos of same shape but different positions will be interpreted as different polyominos.
To solve this, we normalize the position of the polyominos so that their left-most column is at x=0 and their bottom-most row at y=0.
Internally, polyominos are represented as a set of positions on a 2D grid.
This means that 2 polyominos of same shape but at different places will be interpreted as different polyominos.
To solve this, when doing equality checks, we normalize the polyominos so that their left-most column is at x=0 and their bottom-most row at y=0.
Even if there is only 7 one-sided 4-minos, there is already more than 9,000 one-sided 10-minos.
Since the aim of this game is to be playable with polyominos of any size, listing all polyominos manually isn't viable.
We will need a way to:
We will need a way to automatically:
1. Generate all one-sided polyominos of size n
2. Set their spawn positions and rotation centers
Aditionally, for this game we will also a want a way to separate the polyominos into multiple categories, specifically to allow removing those with holes who are more unplayable.
Aditionally, for this game we will also a want a way to separate the polyominos into multiple categories, specifically to allow removing those with holes who are harder to play with.
## Ordering the polyominos
For practical reasons, we want to be able to sort all polyominos of the same size.
This is done very simply:
But to sort objects we need a way to compare them.
When a polyomino is created, an attribute named its length is computed. This is simply the max between its width and its height. Thus the polyomino can be inscribed in a box of size ``length``.
We will now assume that our polyominos are always inscribed in a box of origin (0,0) and size ``length`` (which should always be the case under normal circumstances).
We can now compare polyominos using this method:
- If one polyomino has an inferior length than another, it is deemed inferior
- If two polyomino have the same length, we check all the cells of their square, from left to right, and repeating from up to bottom, for the first position where a polyomino has a cell that another doesn't, the polyomino with the cell is deemed inferior
- If two polyomino have the same length, we check all the positions of their box, from left to right, and repeating from up to bottom, for the first position where a polyomino has a square and the another doesn't, the present polyomino which has a square is deemed inferior
Once the polyomino are ordered, it is very simple to attribute them a color, we can simply iterate through the list while looping over the color list.
A nice side-effect is that, once the polyomino are ordered, it is very simple to attribute them a block type, we can simply iterate through the list while looping over the block list.
## 1. Generating polyominos
@@ -47,51 +50,50 @@ The method used to generate polyominos is similar to the [inductive method](http
The algorithm is the following:
1. Add a single cell at position (0,0), and number it with 0
1. Add a single square at position (0,0), and number it with 0
2. Call the generator function
1. If we get a polyomino of the size we want:
1. We rotate it in its 4 possible rotations and sort them
2. If the polyomino was generated in its lowest rotation, we add it to the list, else we discard it
3. Stop this instance of the function (the function is recursive, see step 2.3.2)
2. Else we number each adjacent cell to the polyomino with a number higher than the last numbered cell, unless:
1. If a cell was already numbered then we don't touch it
2. If a cell is on top of the polyomino then we don't number it
3. If a cell is below y=0, or at exactly x=0 and y<0, then we don't number it
3. For each cell with a higher number than the last added one:
1. We add this cell to the polyomino
2. Else we number each adjacent square to the polyomino with a number higher than the last numbered square, unless:
1. If a square was already numbered then we don't touch it
2. If a square is on top of the polyomino then we don't number it
3. If a square is below y=0, or at exactly x=0 and y<0, then we don't number it
3. For each square with a higher number than the last added one:
1. We add this square to the polyomino
2. We call the generator function (recursive function!)
3. We remove this cell from the polyomino
3. We remove this square from the polyomino
3. Return the list of polyominos
The exact number of one-sided polyominos up to size 12 (and higher, but we only generated up to size 12) is known, and this method generated exactly theses numbers, without duplicates.
The exact number of one-sided polyominos up to size 15 (and higher, but we only generated up to size 15) is known, and this method generated exactly theses numbers, without duplicates.
By marking cells and adding only ones that have a higher number than the last one everytime, we generate each fixed polyomino exactly n times. By ignoring the cells below y=0, or at exactly x=0 and y<0, we generate each fixed polyomino exactly 1 time.
By marking squares and adding only ones that have a higher number than the last one everytime, we generate each fixed polyomino exactly n times. By ignoring the squares below y=0, or at exactly x=0 and y<0, we generate each fixed polyomino exactly 1 time.
An one-sided polyomino has 4 rotations, some of which can be the same if the polyomino has symmetries. 2 rotations that are the same corresponds to 1 fixed polyomino, we will refer to theses 2 rotation as 1 "unique" rotation.
Because we generate every fixed polyomino exactly 1 time, that means each "unique" rotation of an one-sided polyomino is generated exactly one-time, which includes its lowest rotation. That's how we can get away with only checking the rotation of the polyomino and not comparing it to the rest of the generated polyominos.
## 2. Setting the spawn position of polyominos
When a polyomino is created, an attribute named its length is computed. This is simply the max between its width and its height. Thus the polyomino can be inscribed in a square of size ``length``.
So now we can assume the polyomino is always inscribed in a square of origin (0,0) and size ``length`` (which should always be the case under normal circumstances). This make the rotation center very easy to find as it is simply the center of this square, and rotating is as simple as rotating a matrix:
Since we assume the polyomino is always inscribed in a box at origin (0,0), we can use formulae close to matrix rotations to rotate the piece:
- Clockwise (CW) rotation : ``x, y = y, (length - 1) - x``
- 180° rotation : ``x, y = (length - 1) - x, (length - 1) - y``
- Counter-clockwise (CCW) rotation : ``x, y = (length - 1) - y, x``
_Note we set the origin at the bottom-left corner instead of the up-left corner in a matrix, so the formulae aren't exactly the same._
_Note: we set the origin at the bottom-left corner instead of the up-left corner in a matrix, so the formulae aren't exactly the same._
The second challenge comes in finding a normalized spawn position for pieces. To do this, we first need to find which rotation the piece needs to spawn on, and then center it in the middle of its square.
For the rotation, **we want to find the side which is both the widest and the flattest**.
The second challenge comes in finding a normalized spawn position for pieces. To do this, we first need to find which rotation the piece needs to spawn on, and then center it in the middle of its box.
The very arbitrary rules used in this game for finding the spawn rotation is the following: **we want to find the side which is both the widest and the flattest**.
**Widest** means that we prefer if the piece is oriented horizontally rather than vertically.
**Flattest** means we prefer the side with the most cell at the bottom of the piece.
**Flattest** means we prefer the side with the most square at the bottom of the piece.
The current algorithm for doing so is the following:
1. Check if the polyomino has more lines horizontally or vertically, this will determine either 2 or 4 sides which are widest than the others, and the others will be discarded
2. For each potential side check the number of cell on the first line, if one has more than every others, then this side is choosed, else we only keep the sides that tied and repeat for the next line
3. If we still have at least 2 sides tied, we do the same again but check the flatness of the side to the left instead, this will make the pieces overall have more cells to their left at spawn
4. If there is still no winner, we sort the remaining sides (by simulating having them selectionned and then sort the resulting polyominos) and keep the lowest
1. Check if the polyomino has more lines horizontally or vertically, this will determine either 2 or 4 sides which are wider than the others, and the others will be discarded
2. For each potential side check the number of square on the first line, if one has more than every others, then this side is choosed, else we only keep the sides that tied and repeat for the next line
3. If we still have at least 2 sides tied, we do the same again but check the flatness of the side to the left instead, this will make the pieces overall have more squares to their left at spawn
4. If there is still no winner, we sort the remaining sides (by simulating having them selectionned and then sorting the resulting polyominos) and keep the lowest
5. We rotate the piece so that the chosen side ends up at the bottom of the polyomino
6. We center the polyomino inside its square, since we chose the widest side it will always fill the width of the square, but for the height it can be asymmetric, in that case we place it one line closer to the top than the bottom
6. We center the polyomino inside its box, since we chose the widest side it will always fill the width of the square, but for the height it can be asymmetric, in that case we place it one line closer to the top than the bottom
_Note we could actually just skip straight to step 4 because it always give the same orientation, but we want the spawn rotations to follow somewhat of a logic. Step 1 to 3 actually already works for 99% of polyominos and they constrain step 4 too by preselecting certain sides._
@@ -99,10 +101,10 @@ _Note we could actually just skip straight to step 4 because it always give the
For this game, we want the polyominos to be broken down into 3 categories:
- Convex: this is said of a polyomino where every row and column is formed of at most one continous line of cells
- Convex: this is said of a polyomino where every row and column is formed of at most one continous line of squares
- Holeless: the polyominos which are neither convex nor have a hole
- Others: the polyominos who have a hole (thoses are by definition not convex)
To check for convexity, we simply iterate trough each row and column, and check cell by cell if they are all contiguous.
To check for convexity, we simply iterate trough each row and column, and check if all the squares are contiguous.
To check for holes, we list every empty cells starting from the exterior of the square of the polyomino, then add every adjacent empty cell recursively. If the cell has an hole then there is at least one empty cell we could not attaign, and since we know the size of the square and of the polyomino, we can compute wheter we have the right number of empty cells.
To check for holes, we list every empty squares starting from the exterior of the box of the polyomino, then add every adjacent empty square recursively. If the polyomino has an hole then there is at least one empty square we could not attaign, and since we know the size of the square and of the polyomino, we can compute wheter we have the right number of empty squares.

View File

@@ -6,7 +6,7 @@ If you don't know what a polyomino is, check [this other file](Pieces_representa
Generating polyominos of size n is exponential in regard to n. Because of this, we will store the pieces beforehand and load them upon launching the game.
We want the pieces to be always sorted in the same order, always attributed the same color, and always set at the same spawn position, no matter how they were generated. We also want them to be separated in 3 categories : convex, not convex but wihtout a hole, and with a hole. Theses problematics are already resolved internally, but will be calculated before storage as to not need extra calculcations upon load.
We want the pieces to be always sorted in the same order, always attributed the same block type, and always set at the same spawn position, no matter how they were generated. We also want them to be separated in 3 categories : convex, not convex but without a hole, and with a hole. Theses problematics are already resolved internally, but will be calculated before storage as to not need extra calculcations upon load.
## How is it stored
@@ -14,7 +14,8 @@ Pieces are stored in binary files. Each file simply contains every polyomino of
Each piece is stored as follows:
- 1 byte for the length of the piece
- 1 byte for the other characteristics of the piece: ``ABCCCCCC`` where A indicates if the piece is convex, B indicates if it has a hole, and C is the color number of the piece
- 1 byte for each cell: ``XXXXYYYY`` where X is the x coordinate of the cell and Y is the y coordinate of the cell
- 1 byte for the other characteristics of the piece: ``ABCCCCCC`` where A indicates if the piece is convex, B indicates if it has a hole, and C is the block number of the piece
- 1 byte for each position: ``XXXXYYYY`` where X is the x coordinate of the position and Y is the y coordinate of the position
The current implementation only allows to generate polyominos up to size 16, but can be upgraded by storing coordinates on 8 bits instead of 4. It has been choosen to use pieces only up to size 15 for this game.
The current implementation only allows to generate polyominos up to size 16, but can be upgraded by storing coordinates on 8 bits instead of 4.
It has been currently choosen to use pieces only up to size 15 for this game.

View File

@@ -1,17 +1,18 @@
#include "Bag.h"
#include "../Pieces/Piece.h"
#include "PiecesList.h"
#include <Vector>
#include <vector>
#include <utility>
#include <cstdlib>
Bag::Bag(const std::vector<Piece>& pieces) : pieces(pieces) {
Bag::Bag(std::shared_ptr<PiecesList> piecesList) :
piecesList(piecesList) {
// initialize bags
this->currentBag.clear();
for (int i = 0; i < this->pieces.size(); i++) {
this->currentBag.push_back(i);
}
this->currentBag = this->piecesList->getSelectedPieces();
this->nextBag.clear();
// prepare first piece
@@ -19,19 +20,18 @@ Bag::Bag(const std::vector<Piece>& pieces) : pieces(pieces) {
}
Piece Bag::lookNext() {
// return the next piece
return this->pieces.at(this->next);
return *this->piecesList->getPiece(this->next.first, this->next.second);
}
Piece Bag::getNext() {
// get the piece to return
int nextIndex = this->next;
std::pair<int, int> nextIndex = this->next;
// prepare the piece even after the next
this->prepareNext();
// return the next piece
return this->pieces.at(nextIndex);
return *this->piecesList->getPiece(nextIndex.first, nextIndex.second);
}
void Bag::prepareNext() {

View File

@@ -1,8 +1,11 @@
#pragma once
#include "../Pieces/Piece.h"
#include "PiecesList.h"
#include <Vector>
#include <vector>
#include <memory>
#include <utility>
/**
@@ -10,24 +13,27 @@
*/
class Bag {
private:
std::vector<Piece> pieces; // the pieces the bag can dispense
int next; // the next piece to give
std::vector<int> currentBag; // the list of pieces that are still to be taken out before starting a new bag
std::vector<int> nextBag; // the list of pieces that have been taken out of the current bag and have been placed in the next
std::shared_ptr<PiecesList> piecesList; // the list of loaded pieces
std::vector<std::pair<int, int>> selectedPieces; // the list of pieces that can be given to the player
std::pair<int, int> next; // the next piece to give
std::vector<std::pair<int, int>> currentBag; // the list of pieces that are still to be taken out before starting a new bag
std::vector<std::pair<int, int>> nextBag; // the list of pieces that have been taken out of the current bag and have been placed in the next
public:
/**
* Creates a new bag of the specified list of pieces
* Creates a new bag with the pieces currently selected in the piece list
*/
Bag(const std::vector<Piece>& pieces);
Bag(std::shared_ptr<PiecesList> piecesList);
/**
* Looks at what the next picked piece will be
* Looks at what the next picked piece will be, without removing it from the bag
* @return The next piece
*/
Piece lookNext();
/**
* Picks a new piece from the current bag
* Picks a new piece from the current bag, removing it from the bag
* @return The next piece
*/
Piece getNext();

View File

@@ -2,64 +2,59 @@
#include "../Pieces/Piece.h"
#include <Vector>
#include <Set>
#include <vector>
#include <set>
#include <iostream>
Board::Board(int width, int height) : width(width), height(height) {
std::vector<Color> emptyRow;
Board::Board(int width, int height) :
width(width),
height(height) {
this->emptyRow = std::vector<Block>(width);
for (int i = 0; i < width; i ++) {
emptyRow.push_back(NOTHING);
this->emptyRow.push_back(NOTHING);
}
// initialize grid
this->grid.clear();
for (int j = 0; j < height; j++) {
this->grid.push_back(emptyRow);
this->grid.push_back(this->emptyRow);
}
}
void Board::addBlock(const Cell& position, Color block) {
void Board::addBlock(const Position& position, Block block) {
// if the block is out of bounds we discard it
if (position.x < 0 || position.x >= this->width || position.y < 0) return;
// resize the grid if needed
if (position.y >= this->grid.size()) {
std::vector<Color> emptyRow;
for (int i = 0; i < width; i ++) {
emptyRow.push_back(NOTHING);
}
for (int j = this->grid.size(); j <= position.y; j++) {
this->grid.push_back(emptyRow);
this->grid.push_back(this->emptyRow);
}
}
// change the block in the grid
this->grid.at(position.y).at(position.x) = block;
}
int Board::clearRows() {
std::vector<Color> emptyRow;
for (int i = 0; i < width; i ++) {
emptyRow.push_back(NOTHING);
}
// check from top to bottom
// check from top to bottom, so that erasing lines don't screw up the looping
int clearedLines = 0;
for (int j = this->grid.size() - 1; j >= 0; j--) {
// check if a line has a block on every column
bool isFull = true;
for (int i = 0; i < this->width; i++) {
bool lineIsFull = true;
int i = 0;
while (lineIsFull && (i < width)) {
if (this->grid.at(j).at(i) == NOTHING) {
isFull = false;
lineIsFull = false;
}
i++;
}
// if it has, erase it and add a new row at the top
if (isFull) {
if (lineIsFull) {
this->grid.erase(this->grid.begin() + j);
if(this->grid.size() < height) this->grid.push_back(emptyRow);
if(this->grid.size() < height) {
this->grid.push_back(this->emptyRow);
}
clearedLines++;
}
}
@@ -67,18 +62,15 @@ int Board::clearRows() {
return clearedLines;
}
Color Board::getBlock(const Cell& position) const {
// if the block is out of bounds
if (position.x < 0 || position.x >= this->width || position.y < 0) return OUT_OF_BOUND;
Block Board::getBlock(const Position& position) const {
if (position.x < 0 || position.x >= this->width || position.y < 0) return OUT_OF_BOUNDS;
// if the block is higher than the current grid, since it can grow indefinitely we do as if it was there but empty
if (position.y >= this->grid.size()) return NOTHING;
// else get the color in the grid
return this->grid.at(position.y).at(position.x);
}
std::vector<std::vector<Color>> Board::getBlocks() const {
std::vector<std::vector<Block>> Board::getBlocks() const {
return this->grid;
}
@@ -95,11 +87,10 @@ int Board::getWidth() const {
}
std::ostream& operator<<(std::ostream& os, const Board& board) {
// print the board
for (int y = board.grid.size() - 1; y >= 0; y--) {
for (int x = 0; x < board.width; x++) {
Color block = board.grid.at(y).at(x);
os << COLOR_CODES[block];
Block block = board.grid.at(y).at(x);
os << getConsoleColorCode(block);
if (block != NOTHING) {
os << "*";
}
@@ -110,8 +101,7 @@ std::ostream& operator<<(std::ostream& os, const Board& board) {
os << std::endl;
}
// reset console color
os << COLOR_RESET;
os << getResetConsoleColorCode();
return os;
}

View File

@@ -2,7 +2,7 @@
#include "../Pieces/Piece.h"
#include <Vector>
#include <vector>
#include <iostream>
@@ -11,9 +11,10 @@
*/
class Board {
private:
std::vector<std::vector<Color>> grid; // the grid, (0,0) is downleft
int width; // the width of the grid
int height; // the base height of the grid, which can extends indefinitely
std::vector<std::vector<Block>> grid; // the grid, (0,0) is downleft
std::vector<Block> emptyRow; // an empty row of blocks
int width; // the width of the grid
int height; // the base height of the grid, which can extends indefinitely
public:
/**
@@ -22,42 +23,44 @@ class Board {
Board(int width, int height);
/**
* Change the color of the specified block, if the block is out of bounds it is simply ignored
* Change the block of the specified block, if the block is out of bounds it is simply ignored
*/
void addBlock(const Cell& position, Color block);
void addBlock(const Position& position, Block block);
/**
* Clears any complete row and moves down the rows on top, returns the number of cleared rows
* Clears any complete row and moves down the rows on top
* @return The number of cleared rows
*/
int clearRows();
/**
* Returns the color of the block at the specified position
* @return The block of the block at the specified position
*/
Color getBlock(const Cell& position) const;
Block getBlock(const Position& position) const;
/**
* Returns a copy of the grid
* @return A copy of the grid
*/
std::vector<std::vector<Color>> getBlocks() const;
std::vector<std::vector<Block>> getBlocks() const;
/**
* Returns the actual height of the grid
* @return The actual height of the grid
*/
int getGridHeight() const;
/**
* Returns the base height of the grid
* @return The base height of the grid
*/
int getBaseHeight() const;
/**
* Returns the width of the grid
* @return The width of the grid
*/
int getWidth() const;
/**
* Stream output operator, adds a 2D grid representing the board
* @return A reference to the output stream
*/
friend std::ostream& operator<<(std::ostream& os, const Board& board);
};

View File

@@ -4,17 +4,22 @@
#include "GameParameters.h"
#include "Action.h"
#include <Vector>
#include <set>
#include <algorithm>
#include <memory>
static const int SUBPX_PER_ROW = 60; // the number of position the active piece can take "between" two rows
static const int SOFT_DROP_SCORE = 1; // the score gained by line soft dropped
static const int HARD_DROP_SCORE = 2; // the score gained by line hard dropped
static const int SUBPX_PER_ROW = 60; // the number of position the active piece can take "between" two rows
static const int SOFT_DROP_SCORE = 1; // the score gained by line soft dropped
static const int HARD_DROP_SCORE = 2; // the score gained by line hard dropped
static const int LINE_CLEAR_BASE_SCORE = 100; // the score value of clearing a single line
static const int B2B_SCORE_MULTIPLIER = 2; // by how much havaing B2B on multiplies the score of the line clear
static const int B2B_MIN_LINE_NUMBER = 4; // the minimum number of lines needed to be cleared at once to gain B2B (without a spin)
static const int B2B_SCORE_MULTIPLIER = 2; // by how much havaing B2B on multiplies the score of the line clear
static const int B2B_MIN_LINE_NUMBER = 4; // the minimum number of lines needed to be cleared at once to gain B2B (without a spin)
Game::Game(Gamemode gamemode, const Player& controls, int boardWidth, int boardHeight, const std::vector<Piece>& bag) : parameters(gamemode, controls), board(boardWidth, boardHeight, bag, parameters.getNextQueueLength()) {
Game::Game(Gamemode gamemode, const Player& controls, int boardWidth, int boardHeight, const std::shared_ptr<PiecesList>& bag) :
parameters(gamemode, controls),
board(boardWidth, boardHeight, bag, parameters.getNextQueueLength()) {
// the game has not yet started
this->started = false;
this->lost = false;
@@ -221,17 +226,17 @@ void Game::lockPiece() {
this->parameters.clearLines(clear.lines);
// update B2B and score
bool B2BConditions = ((clear.lines > B2B_MIN_LINE_NUMBER) || clear.isSpin || clear.isMiniSpin);
bool B2BConditionsAreMet = ((clear.lines > B2B_MIN_LINE_NUMBER) || clear.isSpin || clear.isMiniSpin);
if (clear.lines > 0) {
/* clearing one more line is worth 2x more
clearing with a spin is worth as much as clearing 2x more lines */
long int clearScore = LINE_CLEAR_BASE_SCORE;
clearScore = clearScore << (clear.lines << (clear.isSpin));
if (this->B2BChain && B2BConditions) clearScore *= B2B_SCORE_MULTIPLIER;
if (this->B2BChain && B2BConditionsAreMet) clearScore *= B2B_SCORE_MULTIPLIER;
this->score += clearScore;
}
this->B2BChain = B2BConditions;
this->B2BChain = B2BConditionsAreMet;
// reset active piece
this->subVerticalPosition = 0;
@@ -286,7 +291,7 @@ Piece Game::getActivePiece() {
return this->board.getActivePiece();
}
Cell Game::getActivePiecePosition() {
Position Game::getActivePiecePosition() {
return this->board.getActivePiecePosition();
}

View File

@@ -4,7 +4,8 @@
#include "GameParameters.h"
#include "Action.h"
#include <Vector>
#include <vector>
#include <memory>
/**
@@ -12,27 +13,27 @@
*/
class Game {
private:
GameParameters parameters; // the current parameters of the game
GameBoard board; // the board in which the game is played
bool started; // wheter the game has started
bool lost; // wheter the game is lost
long int score; // the current score
int framesPassed; // how many frames have passed since the start of the game
bool B2BChain; // wheter the player is currently on a B2B chain
std::set<Action> heldActions; // the list of actions that were pressed last frame
GameParameters parameters; // the current parameters of the game
GameBoard board; // the board in which the game is played
bool started; // wheter the game has started
bool lost; // wheter the game is lost
long int score; // the current score
int framesPassed; // how many frames have passed since the start of the game
bool B2BChain; // wheter the player is currently on a B2B chain
std::set<Action> heldActions; // the list of actions that were pressed last frame
std::set<Action> initialActions; // the list of actions that have been pressed while there was no active piece
int heldDAS; // the number of frames DAS has been held, positive for right or negative for left
int heldARR; // the number of frames ARR has been held
int subVerticalPosition; // how far the active piece is to go down one line
int leftARETime; // how many frames are left before ARE period finishes
int totalLockDelay; // how many frames has the active piece touched the ground without moving
int totalForcedLockDelay; // how many frames the active piece has touched the ground since the last spawned piece
int heldDAS; // the number of frames DAS has been held, positive for right or negative for left
int heldARR; // the number of frames ARR has been held
int subVerticalPosition; // how far the active piece is to go down one line
int leftARETime; // how many frames are left before ARE period finishes
int totalLockDelay; // how many frames has the active piece touched the ground without moving
int totalForcedLockDelay; // how many frames the active piece has touched the ground since the last spawned piece
public:
/**
* Initialize the parameters and creates a new board
*/
Game(Gamemode gamemode, const Player& controls, int boardWidth, int boardHeight, const std::vector<Piece>& bag);
Game(Gamemode gamemode, const Player& controls, int boardWidth, int boardHeight, const std::shared_ptr<PiecesList>& bag);
/**
* Starts the game
@@ -40,85 +41,85 @@ class Game {
void start();
/**
* Advance to the next frame while excecuting the actions taken by the player,
* Advances to the next frame while excecuting the actions taken by the player,
* this is where the main game logic takes place
*/
void nextFrame(const std::set<Action>& playerActions);
private:
/**
* Move the piece in the specified direction
* Movse the piece in the specified direction
*/
void movePiece(int movement, bool resetDirection);
/**
* Locks the piece, updates level and score and spawn the next piece if necessary
* Locks the piece, updates level and score and spawns the next piece if necessary
*/
void lockPiece();
public:
/**
* Returns wheter the player has won
* @return If the player has won
*/
bool hasWon();
/**
* Returns wheter the player has lost
* @return If the player has lost
*/
bool hasLost();
/**
* Returns the current level
* @return The current level
*/
int getLevel();
/**
* Returns the current number of cleared lines
* @return The current number of cleared lines
*/
int getClearedLines();
/**
* Returns the number of frames passed since the start of the game
* @return The number of frames passed since the start of the game
*/
int getFramesPassed();
/**
* Returns the current score
* @return The current score
*/
int getScore();
/**
* Returns wheter the player is currently on a B2B chain
* @return If the player is currently on a B2B chain
*/
bool isOnB2BChain();
/**
* Returns wheter all blocks are currently bone blocks
* @return If all blocks are currently bone blocks
*/
bool areBlocksBones();
/**
* Returns a copy of the board
* @return A copy of the board
*/
Board getBoard();
/**
* Returns a copy of the active piece
* @return A copy of the active piece
*/
Piece getActivePiece();
/**
* Returns a copy of the active piece position
* @return A copy of the active piece position
*/
Cell getActivePiecePosition();
Position getActivePiecePosition();
/**
* Returns a copy of the held piece
* @return A copy of the held piece
*/
Piece getHeldPiece();
/**
* Return a copy of the next pieces queue
* @return A copy of the next pieces queue
*/
std::vector<Piece> getNextPieces();
};

View File

@@ -5,13 +5,16 @@
#include "Bag.h"
#include "LineClear.h"
#include <Vector>
#include <Set>
#include <vector>
#include <set>
#include <memory>
GameBoard::GameBoard(int boardWidth, int boardHeight, const std::vector<Piece>& bag, int nextQueueLength) : board(boardWidth, boardHeight), generator(bag), nextQueueLength(nextQueueLength) {
// initialize queue
GameBoard::GameBoard(int boardWidth, int boardHeight, const std::shared_ptr<PiecesList>& pieceList, int nextQueueLength) :
board(boardWidth, boardHeight),
generator(pieceList),
nextQueueLength(nextQueueLength) {
this->nextQueue.clear();
for (int i = 0; i < nextQueueLength; i++) {
this->nextQueue.push_back(this->generator.getNext());
@@ -19,8 +22,7 @@ GameBoard::GameBoard(int boardWidth, int boardHeight, const std::vector<Piece>&
}
bool GameBoard::moveLeft() {
// check if the piece can be moved one cell left
if (this->isActivePieceInWall(Cell{-1, 0})) {
if (this->isActivePieceInWall(Position{-1, 0})) {
return false;
}
else {
@@ -31,8 +33,7 @@ bool GameBoard::moveLeft() {
}
bool GameBoard::moveRight() {
// check if the piece can be moved one cell right
if (this->isActivePieceInWall(Cell{1, 0})) {
if (this->isActivePieceInWall(Position{1, 0})) {
return false;
}
else {
@@ -43,8 +44,7 @@ bool GameBoard::moveRight() {
}
bool GameBoard::moveDown() {
// check if the piece can be moved one cell down
if (this->isActivePieceInWall(Cell{0, -1})) {
if (this->isActivePieceInWall(Position{0, -1})) {
return false;
}
else {
@@ -55,36 +55,35 @@ bool GameBoard::moveDown() {
}
bool GameBoard::rotate(Rotation rotation) {
// copy the original piece before rotating it
Piece stored = *this->activePiece;
this->rotate(rotation);
// check if the piece can rotate
// before trying to kick, check if the piece can rotate without kicking
if (!this->isActivePieceInWall()) {
this->isLastMoveKick = false;
return true;
}
// get the list of cells that touches the original piece
std::set<Cell> safeCells;
for (Cell cell : stored.getPositions()) {
Cell cellInGrid(cell + this->activePiecePosition);
safeCells.insert(cellInGrid);
safeCells.insert(cellInGrid + Cell{0, 1});
safeCells.insert(cellInGrid + Cell{1, 0});
safeCells.insert(cellInGrid + Cell{0, -1});
safeCells.insert(cellInGrid + Cell{-1, 0});
// get the list of positions that touches the original piece
std::set<Position> safePositions;
for (Position position : stored.getPositions()) {
Position positionInGrid(position + this->activePiecePosition);
safePositions.insert(positionInGrid);
safePositions.insert(positionInGrid + Position{0, 1});
safePositions.insert(positionInGrid + Position{1, 0});
safePositions.insert(positionInGrid + Position{0, -1});
safePositions.insert(positionInGrid + Position{-1, 0});
}
// try kicking the piece down
bool suceeded = this->tryKicking(true, safeCells);
bool suceeded = this->tryKicking(true, safePositions);
if (suceeded) {
this->isLastMoveKick = true;
return true;
}
// if it doesn't work try kicking the piece up
suceeded = this->tryKicking(false, safeCells);
suceeded = this->tryKicking(false, safePositions);
if (suceeded) {
this->isLastMoveKick = true;
return true;
@@ -95,8 +94,8 @@ bool GameBoard::rotate(Rotation rotation) {
return false;
}
bool GameBoard::tryKicking(bool testingBottom, const std::set<Cell>& safeCells) {
// we try from the original height of the piece, moving vertically as long as the kicked piece touches the original
bool GameBoard::tryKicking(bool testingBottom, const std::set<Position>& safePositions) {
// we try from the original height of the piece, moving vertically as long as the kicked piece touches the original at least once on this row
bool overlapsVertically = true;
int j = 0;
do {
@@ -107,13 +106,11 @@ bool GameBoard::tryKicking(bool testingBottom, const std::set<Cell>& safeCells)
do {
// check right before right arbitrarly, we don't decide this with rotations since it would still be arbitrary with 180° rotations
if (overlapsRight) {
Cell shift{+i, j};
// the kicked position must touch the original piece
if (!this->activePieceOverlapsOneCell(safeCells, shift)) {
Position shift{+i, j};
if (!this->activePieceOverlapsOnePosition(safePositions, shift)) {
overlapsLeft = false;
}
else {
// if the position is valid we place the active piece there
if (!this->isActivePieceInWall(shift)) {
this->activePiecePosition += shift;
return true;
@@ -123,8 +120,8 @@ bool GameBoard::tryKicking(bool testingBottom, const std::set<Cell>& safeCells)
// do the same on the left side
if (overlapsLeft) {
Cell shift{-i, j};
if (!this->activePieceOverlapsOneCell(safeCells, shift)) {
Position shift{-i, j};
if (!this->activePieceOverlapsOnePosition(safePositions, shift)) {
overlapsLeft = false;
}
else {
@@ -138,12 +135,10 @@ bool GameBoard::tryKicking(bool testingBottom, const std::set<Cell>& safeCells)
i++;
} while (overlapsLeft && overlapsRight);
// test if no position touched the original piece
if (i == 1) {
overlapsVertically = false;
}
// move one line up or down
(testingBottom) ? j-- : j++;
} while (overlapsVertically);
@@ -151,15 +146,11 @@ bool GameBoard::tryKicking(bool testingBottom, const std::set<Cell>& safeCells)
}
bool GameBoard::hold(Rotation initialRotation) {
// swap with held piece
std::swap(this->activePiece, this->heldPiece);
// if it's the first time holding try the next piece
bool isFirstTimeHolding = false;
if (this->activePiece == nullptr) {
isFirstTimeHolding = true;
// if no pieces in next queue look at what the next would be
bool isFirstTimeHolding = (this->activePiece == nullptr);
if (isFirstTimeHolding) {
// try with the next piece in queue since there is no piece in the hold box yet
if (this->nextQueueLength == 0) {
this->activePiece = std::make_shared<Piece>(this->generator.lookNext());
}
@@ -168,10 +159,8 @@ bool GameBoard::hold(Rotation initialRotation) {
}
}
// set the spawned piece to the correct position
this->goToSpawnPosition();
// apply initial rotation
Piece stored = *this->activePiece;
this->rotate(initialRotation);
@@ -189,14 +178,10 @@ bool GameBoard::hold(Rotation initialRotation) {
}
}
// if it's the first time holding, confirm we keep this piece
if (isFirstTimeHolding) {
if (this->nextQueueLength == 0) {
this->generator.getNext();
}
else {
this->spawnNextPiece();
}
// confirm we keep the piece we tried with
this->nextQueue.push_back(this->generator.getNext());
this->nextQueue.erase(this->nextQueue.begin());
}
// this piece has done nothing yet
@@ -206,39 +191,34 @@ bool GameBoard::hold(Rotation initialRotation) {
}
bool GameBoard::spawnNextPiece() {
// add a piece to the queue
// generate a new piece
this->nextQueue.push_back(this->generator.getNext());
// get next piece from queue
this->activePiece = std::make_shared<Piece>(this->nextQueue.front());
this->nextQueue.erase(this->nextQueue.begin());
// set the spawned piece to the correct position
this->goToSpawnPosition();
// this piece has done nothing yet
this->isLastMoveKick = false;
// returns wheter the piece can spawn correctly
return !this->isActivePieceInWall();
}
bool GameBoard::touchesGround() {
return this->isActivePieceInWall(Cell{0, -1});
return this->isActivePieceInWall(Position{0, -1});
}
LineClear GameBoard::lockPiece() {
// check if the piece is locked in place
bool isLocked = (this->isActivePieceInWall(Cell{0, 1}) && this->isActivePieceInWall(Cell{1, 0}) &&
this->isActivePieceInWall(Cell{-1, 0}) && this->isActivePieceInWall(Cell{0, -1}));
bool isLockedInPlace = (this->isActivePieceInWall(Position{0, 1}) && this->isActivePieceInWall(Position{1, 0})
&& this->isActivePieceInWall(Position{-1, 0}) && this->isActivePieceInWall(Position{0, -1}));
// put the piece in the board
for (Cell cell : this->activePiece->getPositions()) {
this->board.addBlock(cell + this->activePiecePosition, this->activePiece->getColor());
for (Position position : this->activePiece->getPositions()) {
this->board.addBlock(position + this->activePiecePosition, this->activePiece->getBlockType());
}
// check for lines to clear
return LineClear{this->board.clearRows(), isLocked, (!isLocked) && this->isLastMoveKick};
return LineClear{this->board.clearRows(), isLockedInPlace, (!isLockedInPlace) && this->isLastMoveKick};
}
Board GameBoard::getBoard() const {
@@ -249,7 +229,7 @@ Piece GameBoard::getActivePiece() const {
return *this->activePiece;
}
Cell GameBoard::getActivePiecePosition() const {
Position GameBoard::getActivePiecePosition() const {
return this->activePiecePosition;
}
@@ -261,31 +241,28 @@ std::vector<Piece> GameBoard::getNextPieces() const {
return this->nextQueue;
}
bool GameBoard::isActivePieceInWall(const Cell& shift) const {
// check if every cell of the active piece is in an empty spot
for (Cell cell : this->activePiece->getPositions()) {
if (this->board.getBlock(cell + this->activePiecePosition + shift) != NOTHING) return true;
bool GameBoard::isActivePieceInWall(const Position& shift) const {
for (Position position : this->activePiece->getPositions()) {
if (this->board.getBlock(position + this->activePiecePosition + shift) != NOTHING) return true;
}
return false;
}
bool GameBoard::activePieceOverlapsOneCell(const std::set<Cell>& safeCells, const Cell& shift) const {
// check if one cell of the translated active piece overlaps with one cell of the given piece set
for (Cell cell : this->activePiece->getPositions()) {
if (safeCells.contains(cell + shift)) return true;
bool GameBoard::activePieceOverlapsOnePosition(const std::set<Position>& safePositions, const Position& shift) const {
for (Position position : this->activePiece->getPositions()) {
if (safePositions.contains(position + this->activePiecePosition + shift)) return true;
}
return false;
}
void GameBoard::goToSpawnPosition() {
// get the lowest cell of the piece
int lowestCell = this->activePiece->getLength() - 1;
for (Cell cell : this->activePiece->getPositions()) {
if (cell.y < lowestCell) lowestCell = cell.y;
int lowestPosition = this->activePiece->getLength() - 1;
for (Position position : this->activePiece->getPositions()) {
if (position.y < lowestPosition) lowestPosition = position.y;
}
// set the piece one line above the board
this->activePiecePosition.y = this->board.getBaseHeight() - lowestCell;
this->activePiecePosition.y = this->board.getBaseHeight() - lowestPosition;
// center the piece horizontally, biased towards left
this->activePiecePosition.x = (this->board.getWidth() - this->activePiece->getLength()) / 2;
@@ -294,15 +271,13 @@ void GameBoard::goToSpawnPosition() {
std::ostream& operator<<(std::ostream& os, const GameBoard& gameboard) {
// print over the board (only the active piece if it is there)
if (gameboard.activePiece != nullptr) {
Block pieceBlockType = gameboard.activePiece->getBlockType();
os << getConsoleColorCode(pieceBlockType);
// change to the color of the active piece
Color pieceColor = gameboard.activePiece->getColor();
os << COLOR_CODES[pieceColor];
// print only the cell were the active piece is
// print only the position were the active piece is
for (int y = gameboard.activePiecePosition.y + gameboard.activePiece->getLength() - 1; y >= gameboard.board.getBaseHeight(); y--) {
for (int x = 0; x < gameboard.board.getWidth(); x++) {
bool hasActivePiece = gameboard.activePiece->getPositions().contains(Cell{x, y} - gameboard.activePiecePosition);
bool hasActivePiece = gameboard.activePiece->getPositions().contains(Position{x, y} - gameboard.activePiecePosition);
if (hasActivePiece) {
os << "*";
}
@@ -315,21 +290,19 @@ std::ostream& operator<<(std::ostream& os, const GameBoard& gameboard) {
}
// print the board
Color pieceColor = (gameboard.activePiece == nullptr) ? NOTHING : gameboard.activePiece->getColor();
Block pieceBlockType = (gameboard.activePiece == nullptr) ? NOTHING : gameboard.activePiece->getBlockType();
for (int y = gameboard.board.getBaseHeight() - 1; y >= 0; y--) {
for (int x = 0; x < gameboard.board.getWidth(); x++) {
bool hasActivePiece = (gameboard.activePiece == nullptr) ? false : gameboard.activePiece->getPositions().contains(Cell{x, y} - gameboard.activePiecePosition);
bool hasActivePiece = (gameboard.activePiece == nullptr) ? false : gameboard.activePiece->getPositions().contains(Position{x, y} - gameboard.activePiecePosition);
// if the active piece is on this cell, print it
// the active piece takes visual priority over the board
if (hasActivePiece) {
os << COLOR_CODES[pieceColor];
os << getConsoleColorCode(pieceBlockType);
os << "*";
}
// else print the cell of the board
else {
Color block = gameboard.board.getBlock(Cell{x, y});
os << COLOR_CODES[block];
Block block = gameboard.board.getBlock(Position{x, y});
os << getConsoleColorCode(block);
if (block != NOTHING) {
os << "*";
}
@@ -341,7 +314,7 @@ std::ostream& operator<<(std::ostream& os, const GameBoard& gameboard) {
os << std::endl;
}
// print held piece
// print hold box
os << "Hold:" << std::endl;
if (!(gameboard.heldPiece == nullptr)) {
os << *gameboard.heldPiece;
@@ -353,8 +326,7 @@ std::ostream& operator<<(std::ostream& os, const GameBoard& gameboard) {
os << piece;
}
// reset console color
os << COLOR_RESET;
os << getResetConsoleColorCode();
return os;
}

View File

@@ -5,7 +5,7 @@
#include "Bag.h"
#include "LineClear.h"
#include <Vector>
#include <vector>
#include <memory>
@@ -14,104 +14,114 @@
*/
class GameBoard {
private:
Board board; // the board in which pieces moves, (0, 0) is downleft
Bag generator; // the piece generator
Board board; // the board in which pieces moves, (0, 0) is downleft
Bag generator; // the piece generator
std::shared_ptr<Piece> activePiece; // the piece currently in the board
Cell activePiecePosition; // the position of the piece currently in the board
std::shared_ptr<Piece> heldPiece; // a piece being holded
int nextQueueLength; // the number of next pieces seeable at a time
std::vector<Piece> nextQueue; // the list of the next pieces to spawn in the board
bool isLastMoveKick; // wheter the last action the piece did was kicking
Position activePiecePosition; // the position of the piece currently in the board
std::shared_ptr<Piece> heldPiece; // a piece being holded
int nextQueueLength; // the number of next pieces seeable at a time
std::vector<Piece> nextQueue; // the list of the next pieces to spawn in the board
bool isLastMoveKick; // wheter the last action the piece did was kicking
public:
/**
* Creates a new board, generator, and next queue
*/
GameBoard(int boardWidth, int boardHeight, const std::vector<Piece>& bag, int nextQueueLength);
GameBoard(int boardWidth, int boardHeight, const std::shared_ptr<PiecesList>& bag, int nextQueueLength);
/**
* Try moving the piece one cell to the left, and returns wheter it was sucessfull
* Tries moving the piece one position to the left
* @return If it suceeded
*/
bool moveLeft();
/**
* Try moving the piece one cell to the right, and returns wheter it was sucessfull
* Tries moving the piece one position to the right
* @return If it suceeded
*/
bool moveRight();
/**
* Try moving the piece one cell down, and returns wheter it was sucessfull
* Tries moving the piece one position down
* @return If it suceeded
*/
bool moveDown();
/**
* Try rotating the piece and kicking it if necessary, and returns wheter it was sucessfull
* Tries rotating the piece and kicking it if necessary
* @return If it suceeded
*/
bool rotate(Rotation rotation);
private:
/**
* Try kicking the piece, testing position either above or below the piece's initial position
* Tries kicking the piece, testing position either above or below the piece's initial position
* @return If it suceeded
*/
bool tryKicking(bool testingBottom, const std::set<Cell>& safeCells);
bool tryKicking(bool testingBottom, const std::set<Position>& safePositions);
public:
/**
* Try holding the active piece or swapping it if one was already stocked, while trying to apply an initial rotation to the newly spawned piece,
* and returns wheter it was sucessfull
* Tries holding the active piece or swapping it if one was already stocked, while trying to apply an initial rotation to the newly spawned piece
* @return If it suceeded
*/
bool hold(Rotation initialRotation = NONE);
/**
* Spawns the next piece from the queue, and returns wheter it spawns in a wall
* Spawns the next piece from the queue
* @return If it spawned in a wall
*/
bool spawnNextPiece();
/**
* Returns wheter the active piece is touching walls directly below it
* Checks is the active piece as a wall directly below one of its position
* @return If it touches a ground
*/
bool touchesGround();
/**
* Lock the active piece into the board and returns the resulting line clear
* Locks the active piece into the board and clears lines if needed
* @return The resulting line clear
*/
LineClear lockPiece();
/**
* Returns a copy of the board
* @return A copy of the board
*/
Board getBoard() const;
/**
* Returns a copy of the active piece
* @return A copy of the active piece
*/
Piece getActivePiece() const;
/**
* Returns a copy of the position of the active piece
* @return A copy of the position of the active piece
*/
Cell getActivePiecePosition() const;
Position getActivePiecePosition() const;
/**
* Returns a copy of the held piece
* @return A copy of the held piece
*/
Piece getHeldPiece() const;
/**
* Returns a copy of the next piece queue
* @return A copy of the next piece queue
*/
std::vector<Piece> getNextPieces() const;
private:
/**
* Returns wheter the translated active piece is in a wall
* Checks if one of the active piece's positions touches a wall in the board
* @return If the active piece is in a wall
*/
bool isActivePieceInWall(const Cell& shift = Cell{0, 0}) const;
bool isActivePieceInWall(const Position& shift = Position{0, 0}) const;
/**
* Returns wheter the translated active piece overlaps with at least one of the cells
* Check if one of the active piece's positions shifted by a specified position would overlap with a set of positions
* @return If the shifted active piece overlaps with one of the position
*/
bool activePieceOverlapsOneCell(const std::set<Cell>& safeCells, const Cell& shift = Cell{0, 0}) const;
bool activePieceOverlapsOnePosition(const std::set<Position>& safePositions, const Position& shift = Position{0, 0}) const;
/**
* Sets the active piece to its spawn position
@@ -121,6 +131,7 @@ class GameBoard {
public:
/**
* Stream output operator, adds the board, the hold box and the next queue
* @return A reference to the output stream
*/
friend std::ostream& operator<<(std::ostream& os, const GameBoard& gameboard);
};

View File

@@ -4,7 +4,10 @@
#include "Player.h"
GameParameters::GameParameters(Gamemode gamemode, const Player& controls) : gamemode(gamemode), controls(controls) {
GameParameters::GameParameters(Gamemode gamemode, const Player& controls) :
gamemode(gamemode),
controls(controls) {
// initialize lines and level
this->clearedLines = 0;
switch (this->gamemode) {
@@ -85,34 +88,37 @@ void GameParameters::updateStats() {
}
/* GRAVITY */
if (level >= 20) {
// all levels above 20 are instant gravity
this->gravity = 20 * 60;
// get gravity for an assumed 20-rows board
static const int gravityPerLevel[] = {
0, // LVL0
1, // 60f/line, 20s total
2, // 30f/line, 10s total
3, // 20f/line, 6.66s total
4, // 15f/line, 5s total
5, // 12f/line, 4s total
6, // 10f/line, 3.33 total
7, // 8.57f/line, 2.85s total
8, // 7.5f/line, 2.5s total
10, // 6f/line, 2s total
12, // 5f/line, 1.66s total
14, // 4.28f/line, 1.42s total
17, // 3.52f/line, 1.17s total
20, // 3f/line, 60f total
24, // 2.5f/line, 50f total
30, // 2f/line, 40f total
40, // 1.5f/line, 30f total
1 * 60, // 1line/f, 20f total
2 * 60, // 2line/f, 10f total
4 * 60 // 4line/f, 5f total
};
if (this->level < 0) {
this->gravity = gravityPerLevel[0];
}
else if (this->gravity > 20) {
this->gravity = gravityPerLevel[20];
}
else {
// get gravity for an assumed 20-rows board
switch (this->level) {
case 1 : {this->gravity = 1; break;} // 60f/line, 20s total
case 2 : {this->gravity = 2; break;} // 30f/line, 10s total
case 3 : {this->gravity = 3; break;} // 20f/line, 6.66s total
case 4 : {this->gravity = 4; break;} // 15f/line, 5s total
case 5 : {this->gravity = 5; break;} // 12f/line, 4s total
case 6 : {this->gravity = 6; break;} // 10f/line, 3.33 total
case 7 : {this->gravity = 7; break;} // 8.57f/line, 2.85s total
case 8 : {this->gravity = 8; break;} // 7.5f/line, 2.5s total
case 9 : {this->gravity = 10; break;} // 6f/line, 2s total
case 10 : {this->gravity = 12; break;} // 5f/line, 1.66s total
case 11 : {this->gravity = 14; break;} // 4.28f/line, 1.42s total
case 12 : {this->gravity = 17; break;} // 3.52f/line, 1.17s total
case 13 : {this->gravity = 20; break;} // 3f/line, 60f total
case 14 : {this->gravity = 24; break;} // 2.5f/line, 50f total
case 15 : {this->gravity = 30; break;} // 2f/line, 40f total
case 16 : {this->gravity = 40; break;} // 1.5f/line, 30f total
case 17 : {this->gravity = 1 * 60; break;} // 1line/f, 20f total
case 18 : {this->gravity = 2 * 60; break;} // 2line/f, 10f total
case 19 : {this->gravity = 4 * 60; break;} // 4line/f, 5f total
default : this->gravity = 1;
}
this->gravity = gravityPerLevel[this->level];
}
/* LOCK DELAY */

View File

@@ -10,20 +10,20 @@
*/
class GameParameters {
private:
Gamemode gamemode; // the current gamemode
Player controls; // the player's controls
int clearedLines; // the number of cleared lines
int level; // the current level
Gamemode gamemode; // the current gamemode
Player controls; // the player's controls
int clearedLines; // the number of cleared lines
int level; // the current level
int nextQueueLength; // the number of pieces visibles in the next queue
bool boneBlocks; // wheter all blocks are bone blocks
int gravity; // the gravity at which pieces drop
int lockDelay; // the time before the piece lock in place
bool boneBlocks; // wheter all blocks are bone blocks
int gravity; // the gravity at which pieces drop
int lockDelay; // the time before the piece lock in place
int forcedLockDelay; // the forced time before the piece lock in place
int ARE; // the time before the next piece spawn
int lineARE; // the time before the next piece spawn, after clearing a line
int DAS; // the time before the piece repeats moving
int ARR; // the rate at which the piece repeats moving
int SDR; // the rate at which the piece soft drops
int ARE; // the time before the next piece spawn
int lineARE; // the time before the next piece spawn, after clearing a line
int DAS; // the time before the piece repeats moving
int ARR; // the rate at which the piece repeats moving
int SDR; // the rate at which the piece soft drops
public:
/**
@@ -32,12 +32,13 @@ class GameParameters {
GameParameters(Gamemode gamemode, const Player& controls);
/**
* Count the newly cleared lines and update level and stats if needed
* Counts the newly cleared lines and update level and stats if needed
*/
void clearLines(int lineNumber);
/**
* Returns wheter the game ended
* Checks if the game ended based on the current states and time passed, accorind to the gamemode
* @return If the player has won
*/
bool hasWon(int framesPassed);
@@ -49,17 +50,17 @@ class GameParameters {
public:
/**
* Returns the current number of cleared line
* @return The current number of cleared line
*/
int getClearedLines();
/**
* Returns the current level
* @return The current level
*/
int getLevel();
/**
* Returns the length of the next queue
* @return The length of the next queue
*/
int getNextQueueLength();
@@ -69,42 +70,42 @@ class GameParameters {
bool getBoneBlocks();
/**
* Returns the current gravity for a 20-line high board
* @return The current gravity for a 20-line high board
*/
int getGravity();
/**
* Returns the current lock delay
* @return The current lock delay
*/
int getLockDelay();
/**
* Returns the current forced lock delay
* @return The current forced lock delay
*/
int getForcedLockDelay();
/**
* Returns the current ARE
* @return The current ARE
*/
int getARE();
/**
* Returns the current line ARE
* @return The current line ARE
*/
int getLineARE();
/**
* Returns the current DAS
* @return The current DAS
*/
int getDAS();
/**
* Returns the current ARR
* @return The current ARR
*/
int getARR();
/**
* Returns the current SDR
* @return The current SDR
*/
int getSDR();
};

View File

@@ -5,7 +5,7 @@
* Specify how many lines were cleared and how
*/
struct LineClear {
int lines; // the number of lines cleared
bool isSpin; // if the move was a spin
int lines; // the number of lines cleared
bool isSpin; // if the move was a spin
bool isMiniSpin; // if the move was a spin mini
};

62
src/Core/PiecesList.cpp Normal file
View File

@@ -0,0 +1,62 @@
#include "PiecesList.h"
#include "../Pieces/Piece.h"
#include "../Pieces/PiecesFiles.h"
#include <vector>
#include <utility>
#include <memory>
PiecesList::PiecesList() {
this->maximumLoadedSize = 0;
this->loadedPieces.clear();
this->loadedPieces.push_back(std::vector<Piece>());
this->selectedPieces.clear();
}
bool PiecesList::loadPieces(int size) {
if (size < 1) return false;
PiecesFiles piecesFiles;
std::vector<int> convexPieces;
std::vector<int> holelessPieces;
std::vector<int> otherPieces;
for (int i = this->maximumLoadedSize + 1; i <= size; i++) {
std::vector<Piece> pieces;
this->loadedPieces.push_back(pieces);
if (!piecesFiles.loadPieces(i, this->loadedPieces.at(i), convexPieces, holelessPieces, otherPieces)) {
return false;
}
else {
this->maximumLoadedSize++;
}
}
return true;
}
bool PiecesList::selectPieces(int size, int number) {
if (size < 1 || size > this->maximumLoadedSize || number >= this->loadedPieces.at(size).size()) return false;
this->selectedPieces.push_back(std::pair<int, int>(size, number));
return true;
}
std::vector<std::pair<int, int>> PiecesList::getSelectedPieces() {
return this->selectedPieces;
}
int PiecesList::getNumberOfPiecesOfOneSize(int size) {
if (size < 1 || size > this->maximumLoadedSize) return 0;
return this->loadedPieces.at(size).size();
}
std::shared_ptr<Piece> PiecesList::getPiece(int size, int number) {
if (size < 1 || size > this->maximumLoadedSize || number >= this->loadedPieces.at(size).size()) return nullptr;
return std::make_shared<Piece>(this->loadedPieces.at(size).at(number));
}

28
src/Core/PiecesList.h Normal file
View File

@@ -0,0 +1,28 @@
#pragma once
#include "../Pieces/Piece.h"
#include <vector>
#include <utility>
#include <memory>
class PiecesList {
private:
int maximumLoadedSize;
std::vector<std::vector<Piece>> loadedPieces;
std::vector<std::pair<int, int>> selectedPieces;
public:
PiecesList();
bool loadPieces(int size);
bool selectPieces(int size, int numbers);
std::vector<std::pair<int, int>> getSelectedPieces();
int getNumberOfPiecesOfOneSize(int size);
std::shared_ptr<Piece> getPiece(int size, int number);
};

View File

@@ -1,11 +1,11 @@
#include "Player.h"
static const int DAS_MIN_VALUE = 0;
static const int DAS_MAX_VALUE = 30;
static const int ARR_MIN_VALUE = 0;
static const int ARR_MAX_VALUE = 30;
static const int SDR_MIN_VALUE = 0;
static const int SDR_MAX_VALUE = 6;
static const int DAS_MIN_VALUE = 0; // 0ms
static const int DAS_MAX_VALUE = 30; // 500ms
static const int ARR_MIN_VALUE = 0; // 0ms
static const int ARR_MAX_VALUE = 30; // 500ms
static const int SDR_MIN_VALUE = 0; // 0ms
static const int SDR_MAX_VALUE = 6; // 100ms
Player::Player() {

View File

@@ -17,32 +17,35 @@ class Player {
Player();
/**
* Try setting DAS to the desired value, and returns wheter it is possible
* Try setting DAS to the desired value
* @return If it is possible
*/
bool setDAS(int DAS);
/**
* Try setting ARR to the desired value, and returns wheter it is possible
* Try setting ARR to the desired value
* @return If it is possible
*/
bool setARR(int ARR);
/**
* Try setting SDR to the desired value, and returns wheter it is possible
* Try setting SDR to the desired value
* @return If it is possible
*/
bool setSDR(int SDR);
/**
* Returns DAS value
* @return DAS value
*/
int getDAS();
/**
* Returns ARR value
* @return ARR value
*/
int getARR();
/**
* Returns SDR value
* @return SDR value
*/
int getSDR();
};

View File

@@ -1,6 +1,7 @@
#include "../Pieces/PiecesFiles.h"
#include "../Pieces/Generator.h"
#include "GameBoard.h"
#include "PiecesList.h"
#include <chrono>
#include <string>
@@ -20,6 +21,21 @@ void readStatsFromFilesForAllSizes(int amount);
int main(int argc, char** argv) {
std::srand(std::time(NULL));
int sizeSelected = 3;
PiecesList pli;
std::shared_ptr<PiecesList> pl = std::make_shared<PiecesList>(pli);
pl->loadPieces(sizeSelected);
for (int i = 0; i < pl->getNumberOfPiecesOfOneSize(sizeSelected); i++) {
pl->selectPieces(sizeSelected, i);
}
GameBoard gb(10, 4, pl, 1);
for (int i = 0; i < pl->getNumberOfPiecesOfOneSize(sizeSelected) * 3; i++) {
gb.spawnNextPiece();
std::cout << gb << std::endl;
}
return 0;
}

37
src/Pieces/Block.h Normal file
View File

@@ -0,0 +1,37 @@
#pragma once
#include <string>
/**
* Every possible block type
*/
enum Block {
NOTHING,
OUT_OF_BOUNDS,
GARBAGE,
PURPLE,
ORANGE,
CYAN,
PINK,
YELLOW,
RED,
BLUE,
GREEN
};
/**
* Gets the first block type a piece can be
* @return The block type
*/
inline Block firstPieceBlockType() {
return Block(PURPLE);
}
/**
* Sets the block to the next available piece block type
*/
inline void nextPieceBlockType(Block& block) {
block = (block == GREEN) ? PURPLE : Block(block + 1);
}

View File

@@ -1,66 +0,0 @@
#pragma once
#include <iostream>
/**
* A cell on a 2D grid
*/
struct Cell {
int x; // x position
int y; // y position
};
/**
* Addition operator, returns the sums of the coordinates of both cells
*/
inline Cell operator+(const Cell& left, const Cell& right) {
return Cell{left.x + right.x, left.y + right.y};
}
/**
* Additive assignation operator, adds the coordinates of the right cell to the left one
*/
inline Cell& operator+=(Cell& left, const Cell& right) {
left = left + right;
return left;
}
/**
* Substraction operator, returns the difference of the coordinate between the left and right cell
*/
inline Cell operator-(const Cell& left, const Cell& right) {
return Cell{left.x - right.x, left.y - right.y};
}
/**
* Substractive assignation operator, substract the coordinates of the right cell from the left one
*/
inline Cell& operator-=(Cell& left, const Cell& right) {
left = left - right;
return left;
}
/**
* Strict inferiority operator, a cell is inferior to another if it is lower or at the same height and more to the left
*/
inline bool operator<(const Cell& left, const Cell& right) {
return (left.x == right.x) ? (left.y < right.y) : (left.x < right.x);
}
/**
* Equality operator, two cells are equal if they have the same coordinates
*/
inline bool operator==(const Cell& left, const Cell& right) {
return (left.x == right.x) && (left.y == right.y);
}
/**
* Stream output operator, adds the coordinates of the cell to the stream
*/
inline std::ostream& operator<<(std::ostream& os, const Cell& cell) {
os << "x: " << cell.x << " y: " << cell.y;
return os;
}

View File

@@ -1,51 +1,55 @@
#pragma once
#include <String>
#include "Block.h"
#include "string"
/**
* Every possible colors a block can take
* A color encoded in RGB
*/
enum Color {
NOTHING,
OUT_OF_BOUND,
GARBAGE,
PURPLE,
ORANGE,
CYAN,
PINK,
YELLOW,
RED,
BLUE,
GREEN
struct Color {
unsigned char red; // the red component of the color
unsigned char green; // the green component of the color
unsigned char blue; // the blue component of the color
};
/**
* Returns the first color a piece can take
*/
inline Color firstPieceColor() {
return Color(PURPLE);
}
/**
* Sets the color to the next available piece color
*/
inline void nextPieceColor(Color& color) {
color = (color == GREEN) ? PURPLE : Color(color + 1);
}
static const std::string COLOR_RESET = "\033[38;2;255;255;255m"; // color code to reset the console color
static const std::string COLOR_CODES[] = { // color codes to change the console color
COLOR_RESET, // NOTHING
COLOR_RESET, // OUT_OF_BOUND
"\033[38;2;150;150;150m", // GARBAGE
"\033[38;2;150;0;255m", // PURPLE
"\033[38;2;255;150;0m", // ORANGE
"\033[38;2;0;255;255m", // CYAN
"\033[38;2;255;0;200m", // PINK
"\033[38;2;255;255;0m", // YELLOW
"\033[38;2;255;0;0m", // RED
"\033[38;2;0;100;255m", // BLUE
"\033[38;2;0;255;0m" // GREEN
static const Color EMPTY_BLOCK_COLOR = {255, 255, 255}; // color of an empty block
static const Color BLOCKS_COLOR[] = { // color for each block type
EMPTY_BLOCK_COLOR, // NOTHING
EMPTY_BLOCK_COLOR, // OUT_OF_BOUNDS
{150, 150, 150}, // GARBAGE
{150, 0, 255}, // PURPLE
{255, 150, 0}, // ORANGE
{0, 255, 255}, // CYAN
{255, 0, 200}, // PINK
{255, 255, 0}, // YELLOW
{255, 0, 0}, // RED
{0, 100, 255}, // BLUE
{0, 255, 0} // GREEN
};
/**
* Translates the color into a color code to change the console's color
* @return A string to print in the console
*/
inline std::string getConsoleColorCode(const Color& color) {
return "\033[38;2;" + std::to_string(color.red) + ";" + std::to_string(color.green) + ";" + std::to_string(color.blue) + "m";
}
/**
* Translates the color into a color code to change the console's color
* @return A string to print in the console
*/
inline std::string getConsoleColorCode(const Block block) {
return getConsoleColorCode(BLOCKS_COLOR[block]);
}
/**
* Gets a color code to reset the console's color
* @return A string to print in the console
*/
inline std::string getResetConsoleColorCode() {
return getConsoleColorCode(EMPTY_BLOCK_COLOR);
}

View File

@@ -2,36 +2,33 @@
#include "Polyomino.h"
#include <Vector>
#include <Set>
#include <Map>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
Generator::Generator() {
}
std::vector<Polyomino> Generator::generatePolyominos(unsigned int order) {
// initialization
std::vector<Polyomino> Generator::generatePolyominos(unsigned int polyominoSize) {
this->validPolyominos.clear();
this->currentTestedShape.clear();
// no polyomino with 0 cells
if (order == 0) return this->validPolyominos;
// no polyomino of size 0
if (polyominoSize == 0) return this->validPolyominos;
// start generating from the monomino
this->currentTestedShape.insert(Cell{0, 0});
this->currentTestedShape.insert(Position{0, 0});
// generate polyominos
std::map<Cell, int> candidateCells;
this->generate(order, 0, 1, candidateCells);
std::map<Position, int> candidatePositions;
this->generate(polyominoSize, 0, 1, candidatePositions);
return this->validPolyominos;
}
void Generator::generate(unsigned int order, int lastAddedCellNumber, int nextAvaibleNumber, std::map<Cell, int> candidateCells) {
void Generator::generate(unsigned int polyominoSize, int lastAddedPositionNumber, int nextAvaibleNumber, std::map<Position, int> candidatePositions) {
// recursion stop
if (order == this->currentTestedShape.size()) {
// we test the polyomino formed by the current shape
if (polyominoSize == this->currentTestedShape.size()) {
Polyomino candidate(this->currentTestedShape);
// we sort the rotations of the polyominos
@@ -51,35 +48,35 @@ void Generator::generate(unsigned int order, int lastAddedCellNumber, int nextAv
return;
}
// generate the list of candidate cells
for (Cell cell : this->currentTestedShape) {
this->tryToAddCandidateCell(Cell{cell.x, cell.y + 1}, nextAvaibleNumber, candidateCells);
this->tryToAddCandidateCell(Cell{cell.x + 1, cell.y}, nextAvaibleNumber, candidateCells);
this->tryToAddCandidateCell(Cell{cell.x, cell.y - 1}, nextAvaibleNumber, candidateCells);
this->tryToAddCandidateCell(Cell{cell.x - 1, cell.y}, nextAvaibleNumber, candidateCells);
// generate the list of candidate positions
for (Position position : this->currentTestedShape) {
this->tryToAddCandidatePosition(Position{position.x, position.y + 1}, nextAvaibleNumber, candidatePositions);
this->tryToAddCandidatePosition(Position{position.x + 1, position.y}, nextAvaibleNumber, candidatePositions);
this->tryToAddCandidatePosition(Position{position.x, position.y - 1}, nextAvaibleNumber, candidatePositions);
this->tryToAddCandidatePosition(Position{position.x - 1, position.y}, nextAvaibleNumber, candidatePositions);
}
// generate polyominos for all cells with a higher number than the last one
for (auto [key, val] : candidateCells) {
if (val > lastAddedCellNumber) {
// generate polyominos for all positions with a higher number than the last one
for (auto [key, val] : candidatePositions) {
if (val > lastAddedPositionNumber) {
this->currentTestedShape.insert(key);
this->generate(order, val, nextAvaibleNumber, (order == this->currentTestedShape.size()) ? std::map<Cell, int>() : candidateCells);
this->generate(polyominoSize, val, nextAvaibleNumber, (polyominoSize == this->currentTestedShape.size()) ? std::map<Position, int>() : candidatePositions);
this->currentTestedShape.erase(key);
}
}
}
void Generator::tryToAddCandidateCell(const Cell& candidate, int& nextAvaibleNumber, std::map<Cell, int>& candidateCells) {
// we declared the first cell as the lower-left square, since we always start with a monomino at (0,0) we can test with hard values
void Generator::tryToAddCandidatePosition(const Position& candidate, int& nextAvaibleNumber, std::map<Position, int>& candidatepositions) {
// we declared the first position as the lower-left square, since we always start with a monomino at (0,0) we can test with 0 directly
if (candidate.y < 0 || (candidate.y == 0 && candidate.x < 0)) return;
// if the cell was already marked then we should not mark it again
if (candidateCells.contains(candidate)) return;
// if the position was already marked then we should not mark it again
if (candidatepositions.contains(candidate)) return;
// if the candidate overlaps with the shape there is no reason to add it
if (this->currentTestedShape.contains(candidate)) return;
// once all tests passed we can add the cell
candidateCells.insert({candidate, nextAvaibleNumber});
// once all tests passed we can add the position
candidatepositions.insert({candidate, nextAvaibleNumber});
nextAvaibleNumber++;
}

View File

@@ -2,9 +2,9 @@
#include "Polyomino.h"
#include <Vector>
#include <Set>
#include <Map>
#include <vector>
#include <set>
#include <map>
/**
@@ -13,27 +13,28 @@
class Generator {
private:
std::vector<Polyomino> validPolyominos; // the list of already generated polyominos
std::set<Cell> currentTestedShape; // the polyomino being created
std::set<Position> currentTestedShape; // the polyomino being created
public:
/**
* Initializes generator
* Default constructor
*/
Generator();
/**
* Returns the list of all one-sided polyominos of the specified size
* Generates the list of all one-sided polyominos of the specified size
* @return The list of polyominos
*/
std::vector<Polyomino> generatePolyominos(unsigned int order);
std::vector<Polyomino> generatePolyominos(unsigned int polyominoSize);
private:
/**
* Generates all one-sided polyominos of the specified using the current tested shape
* Generates all one-sided polyominos of the specified size using the current tested shape
*/
void generate(unsigned int order, int lastAddedCellNumber, int nextAvaibleNumber, std::map<Cell, int> candidateCells);
void generate(unsigned int polyominoSize, int lastAddedPositionNumber, int nextAvaibleNumber, std::map<Position, int> candidatePositions);
/**
* Check wheter a candidate cell can be added to the current tested shape
* Checks wheter a candidate position can be added to the current tested shape
*/
void tryToAddCandidateCell(const Cell& candidate, int& nextAvaibleNumber, std::map<Cell, int>& candidateCells);
void tryToAddCandidatePosition(const Position& candidate, int& nextAvaibleNumber, std::map<Position, int>& candidatePositions);
};

View File

@@ -2,13 +2,16 @@
#include "Polyomino.h"
#include "Rotation.h"
#include "Block.h"
#include "Color.h"
#include <Set>
#include <String>
#include <set>
#include <string>
Piece::Piece(const Polyomino& polyomino, Color color) : polyomino(polyomino), color(color) {
Piece::Piece(const Polyomino& polyomino, Block blockType) :
polyomino(polyomino),
blockType(blockType) {
}
void Piece::rotate(Rotation rotation) {
@@ -20,19 +23,19 @@ void Piece::rotate(Rotation rotation) {
this->polyomino.rotateCCW();
}
std::set<Cell> Piece::getPositions() const {
return this->polyomino.getCells();
std::set<Position> Piece::getPositions() const {
return this->polyomino.getPositions();
}
int Piece::getLength() const {
return this->polyomino.getLength();
}
Color Piece::getColor() const {
return this->color;
Block Piece::getBlockType() const {
return this->blockType;
}
std::ostream& operator<<(std::ostream& os, const Piece& piece) {
os << COLOR_CODES[piece.color] << piece.polyomino << COLOR_RESET;
os << getConsoleColorCode(piece.blockType) << piece.polyomino << getResetConsoleColorCode();
return os;
}

View File

@@ -2,9 +2,10 @@
#include "Polyomino.h"
#include "Rotation.h"
#include "Block.h"
#include "Color.h"
#include <Set>
#include <set>
/**
@@ -13,13 +14,13 @@
class Piece {
private:
Polyomino polyomino; // a polyomino representing the piece, (0, 0) is downleft
Color color; // the color of the piece
Block blockType; // the block type of the piece
public:
/**
* Creates a piece with a specified shape and color
* Creates a piece with a specified shape and block type
*/
Piece(const Polyomino& piece, Color color);
Piece(const Polyomino& piece, Block blockType);
/**
* Rotates the piece in the specified direction
@@ -27,22 +28,23 @@ class Piece {
void rotate(Rotation rotation);
/**
* Returns a copy of the list of cells of the piece
* @return A copy of the list of positions of the piece
*/
std::set<Cell> getPositions() const;
std::set<Position> getPositions() const;
/**
* Returns the length of the piece
* @return The length of the piece
*/
int getLength() const;
/**
* Returns the color of the piece
* @return The block type of the piece
*/
Color getColor() const;
Block getBlockType() const;
/**
* Stream output operator, adds a 2D grid representing the piece
* @return A reference to the output stream
*/
friend std::ostream& operator<<(std::ostream& os, const Piece& piece);
};

View File

@@ -3,8 +3,8 @@
#include "Generator.h"
#include "Piece.h"
#include <Vector>
#include <String>
#include <vector>
#include <string>
#include <iostream>
#include <fstream>
#include <filesystem>
@@ -14,10 +14,9 @@
PiecesFiles::PiecesFiles() {
}
bool PiecesFiles::savePieces(int order) const {
// open pieces file
bool PiecesFiles::savePieces(int polyominoSize) const {
std::string filePath;
if (!this->getFilePath(order, filePath)) {
if (!this->getFilePath(polyominoSize, filePath)) {
return false;
}
std::ofstream piecesFile(filePath, std::ios::trunc | std::ios::binary);
@@ -25,46 +24,44 @@ bool PiecesFiles::savePieces(int order) const {
return false;
}
// generates the polyominos
Generator generator;
std::vector<Polyomino> nMinos = generator.generatePolyominos(order);
std::vector<Polyomino> nMinos = generator.generatePolyominos(polyominoSize);
// set the polyominos to their spawn position
// sorting the polyominos is done after setting spawn position to ensure the order is always the same
for (Polyomino& nMino : nMinos) {
nMino.goToSpawnPosition();
}
// sort the polyominos, is done after setting spawn position to ensure the order is always the same
std::sort(nMinos.begin(), nMinos.end());
// write pieces
Color pieceColor = firstPieceColor();
for (int i = 0; i < order; i++) nextPieceColor(pieceColor);
Block pieceblock = firstPieceBlockType();
for (int i = 0; i < polyominoSize; i++) {
nextPieceBlockType(pieceblock);
}
for (const Polyomino& nMino : nMinos) {
// write polyomino length
char lengthByte = nMino.getLength();
piecesFile.write(&lengthByte, 1);
// write the type and color of the piece
char infoByte = (nMino.isConvex() << 7) + (nMino.hasHole() << 6) + pieceColor;
nextPieceColor(pieceColor);
// write the type and block of the piece
char infoByte = (nMino.isConvex() << 7) + (nMino.hasHole() << 6) + pieceblock;
nextPieceBlockType(pieceblock);
piecesFile.write(&infoByte, 1);
// write the cells of the piece
char cellByte;
for (Cell cell : nMino.getCells()) {
cellByte = (cell.x << 4) + cell.y;
piecesFile.write(&cellByte, 1);
// write the positions of the piece
char positionByte;
for (Position position : nMino.getPositions()) {
positionByte = (position.x << 4) + position.y;
piecesFile.write(&positionByte, 1);
}
}
return true;
}
bool PiecesFiles::loadPieces(int order, std::vector<Piece>& pieces, std::vector<int>& convexPieces, std::vector<int>& holelessPieces, std::vector<int>& otherPieces) const {
// open pieces file
bool PiecesFiles::loadPieces(int polyominoSize, std::vector<Piece>& pieces, std::vector<int>& convexPieces, std::vector<int>& holelessPieces, std::vector<int>& otherPieces) const {
std::string filePath;
if (!this->getFilePath(order, filePath)) {
if (!this->getFilePath(polyominoSize, filePath)) {
return false;
}
std::ifstream piecesFile(filePath, std::ios::binary);
@@ -72,22 +69,20 @@ bool PiecesFiles::loadPieces(int order, std::vector<Piece>& pieces, std::vector<
return false;
}
// get empty vectors
pieces.clear();
convexPieces.clear();
holelessPieces.clear();
otherPieces.clear();
// set up masks
char convexMask = 0b1000'0000;
char holeMask = 0b0100'0000;
char colorMask = 0b0011'1111;
char blockMask = 0b0011'1111;
char xMask = 0b1111'0000;
char yMask = 0b0000'1111;
// read the pieces
char lengthByte;
int i = 0;
// read piece length
while (piecesFile.get(lengthByte)) {
if (piecesFile.eof()) break;
@@ -96,23 +91,21 @@ bool PiecesFiles::loadPieces(int order, std::vector<Piece>& pieces, std::vector<
piecesFile.get(infoByte);
bool isConvex = (infoByte & convexMask) >> 7;
bool hasHole = (infoByte & holeMask) >> 6;
Color color = Color(infoByte & colorMask);
Block block = Block(infoByte & blockMask);
// read cells
std::set<Cell> pieceCells;
char cellByte;
for (int i = 0; i < order; i++) {
piecesFile.get(cellByte);
int x = (cellByte & xMask) >> 4;
int y = cellByte & yMask;
pieceCells.insert(Cell{x, y});
// read positions
std::set<Position> piecepositions;
char positionByte;
for (int i = 0; i < polyominoSize; i++) {
piecesFile.get(positionByte);
int x = (positionByte & xMask) >> 4;
int y = positionByte & yMask;
piecepositions.insert(Position{x, y});
}
// create piece
Piece readPiece(Polyomino(pieceCells, lengthByte), color);
Piece readPiece(Polyomino(piecepositions, lengthByte), block);
pieces.push_back(readPiece);
// link it to its type
if (isConvex) {
convexPieces.push_back(i);
}
@@ -129,14 +122,12 @@ bool PiecesFiles::loadPieces(int order, std::vector<Piece>& pieces, std::vector<
return true;
}
bool PiecesFiles::getFilePath(int order, std::string& filePath) const {
// verify that the data folder exists
bool PiecesFiles::getFilePath(int polyominoSize, std::string& filePath) const {
std::string dataFolderPath = "data/pieces/";
if (!std::filesystem::is_directory(dataFolderPath)) {
return false;
}
// return the file path
filePath = dataFolderPath + std::to_string(order) + "minos.bin";
filePath = dataFolderPath + std::to_string(polyominoSize) + "minos.bin";
return true;
}

View File

@@ -2,8 +2,8 @@
#include "Piece.h"
#include <Vector>
#include <String>
#include <vector>
#include <string>
/**
@@ -12,26 +12,26 @@
class PiecesFiles {
public:
/**
* Initializes file manager
* Default constructor
*/
PiecesFiles();
/**
* Generate a file containing all the pieces of the specified size,
* returns false if the file couldn't be created
* Generate a file containing all the pieces of the specified size
* @return If the file could be created
*/
bool savePieces(int order) const;
bool savePieces(int polyominoSize) const;
/**
* Replace the content of the vectors by the pieces of the specified size, if the file wasn't found the vectors stays untouched,
* returns false if the file wasn't found
* Replace the content of the vectors by the pieces of the specified size, if the file wasn't found the vectors stays untouched
* @return If the file was found
*/
bool loadPieces(int order, std::vector<Piece>& pieces, std::vector<int>& convexPieces, std::vector<int>& holelessPieces, std::vector<int>& otherPieces) const;
bool loadPieces(int polyominoSize, std::vector<Piece>& pieces, std::vector<int>& convexPieces, std::vector<int>& holelessPieces, std::vector<int>& otherPieces) const;
private:
/**
* Puts the path to the piece file of the specified size in order, if the data folder wasn't found the string stays untouched,
* returns false if the data folder wasn't found
* Puts the path to the piece file of the specified size in order, if the data folder wasn't found the string stays untouched
* @return If the data folder was found
*/
bool getFilePath(int order, std::string& filePath) const;
bool getFilePath(int polyominoSize, std::string& filePath) const;
};

View File

@@ -1,83 +1,82 @@
#include "Polyomino.h"
#include "Cell.h"
#include "Position.h"
#include <Vector>
#include <Set>
#include <vector>
#include <set>
#include <iostream>
#include <climits>
#include <algorithm>
Polyomino::Polyomino(const std::set<Cell>& cells) {
Polyomino::Polyomino(const std::set<Position>& positions) {
// find min/max
int minX = INT_MAX;
int maxX = INT_MIN;
int minY = INT_MAX;
int maxY = INT_MIN;
for (Cell cell : cells) {
if (cell.x < minX) minX = cell.x;
if (cell.x > maxX) maxX = cell.x;
if (cell.y < minY) minY = cell.y;
if (cell.y > maxY) maxY = cell.y;
for (Position position : positions) {
if (position.x < minX) minX = position.x;
if (position.x > maxX) maxX = position.x;
if (position.y < minY) minY = position.y;
if (position.y > maxY) maxY = position.y;
}
// normalize
std::set<Cell> newCells;
for (Cell cell : cells) {
newCells.insert(Cell{cell.x - minX, cell.y - minY});
std::set<Position> newPositions;
for (Position position : positions) {
newPositions.insert(Position{position.x - minX, position.y - minY});
}
this->cells = newCells;
this->positions = newPositions;
// set polyomino length
this->length = std::max(maxX - minX + 1, maxY - minY + 1);
}
Polyomino::Polyomino(const std::set<Cell>& cells, int length) : cells(cells), length(length) {
Polyomino::Polyomino(const std::set<Position>& positions, int length) :
positions(positions),
length(length) {
}
void Polyomino::normalize() {
// find min values
int minX = INT_MAX;
int minY = INT_MAX;
for (Cell cell : this->cells) {
if (cell.x < minX) minX = cell.x;
if (cell.y < minY) minY = cell.y;
for (Position position : this->positions) {
if (position.x < minX) minX = position.x;
if (position.y < minY) minY = position.y;
}
// translate the polyomino to the lowest unsigned values
std::set<Cell> newCells;
for (Cell cell : this->cells) {
newCells.insert(Cell{cell.x - minX, cell.y - minY});
std::set<Position> newPositions;
for (Position position : this->positions) {
newPositions.insert(Position{position.x - minX, position.y - minY});
}
this->cells = newCells;
this->positions = newPositions;
}
void Polyomino::rotateCW() {
// rotate 90° clockwise
std::set<Cell> newCells;
for (Cell cell : this->cells) {
newCells.insert(Cell{cell.y, (length - 1) - (cell.x)});
std::set<Position> newPositions;
for (Position position : this->positions) {
newPositions.insert(Position{position.y, (length - 1) - (position.x)});
}
this->cells = newCells;
this->positions = newPositions;
}
void Polyomino::rotate180() {
// rotate 180°
std::set<Cell> newCells;
for (Cell cell : this->cells) {
newCells.insert(Cell{(length - 1) - (cell.x), (length - 1) - (cell.y)});
std::set<Position> newPositions;
for (Position position : this->positions) {
newPositions.insert(Position{(length - 1) - (position.x), (length - 1) - (position.y)});
}
this->cells = newCells;
this->positions = newPositions;
}
void Polyomino::rotateCCW() {
// rotate 90° counter-clockwise
std::set<Cell> newCells;
for (Cell cell : this->cells) {
newCells.insert(Cell{(length - 1) - (cell.y), cell.x});
std::set<Position> newPositions;
for (Position position : this->positions) {
newPositions.insert(Position{(length - 1) - (position.y), position.x});
}
this->cells = newCells;
this->positions = newPositions;
}
void Polyomino::goToSpawnPosition() {
@@ -91,15 +90,15 @@ void Polyomino::goToSpawnPosition() {
linesCompleteness.push_back(empty);
}
// calculates amount of cells per rows and columns
for (Cell cell : this->cells) {
linesCompleteness.at(0).at(cell.y) += 1; // 0 = bottom to top = no rotation
linesCompleteness.at(1).at((length - 1) - cell.x) += 1; // 1 = right to left = CW
linesCompleteness.at(2).at((length - 1) - cell.y) += 1; // 2 = top to bottom = 180
linesCompleteness.at(3).at(cell.x) += 1; // 3 = left to right = CCW
// calculates amount of squares per rows and columns
for (Position position : this->positions) {
linesCompleteness.at(0).at(position.y) += 1; // 0 = bottom to top = no rotation
linesCompleteness.at(1).at((length - 1) - position.x) += 1; // 1 = right to left = CW
linesCompleteness.at(2).at((length - 1) - position.y) += 1; // 2 = top to bottom = 180
linesCompleteness.at(3).at(position.x) += 1; // 3 = left to right = CCW
}
// checks for empty lines
// count empty lines
int horizontalEmptyLines = 0;
int verticalEmptyLines = 0;
for (int i = 0; i < 4; i++) {
@@ -157,26 +156,24 @@ void Polyomino::goToSpawnPosition() {
// find min
int minX = INT_MAX;
int minY = INT_MAX;
for (Cell cell : this->cells) {
if (cell.x < minX) minX = cell.x;
if (cell.y < minY) minY = cell.y;
for (Position position : this->positions) {
if (position.x < minX) minX = position.x;
if (position.y < minY) minY = position.y;
}
// center the piece with an up bias if it is assymetric
if (sideToBeOn % 2 == 1) {
std::swap(verticalEmptyLines, horizontalEmptyLines);
}
std::set<Cell> newCells;
for (Cell cell : cells) {
newCells.insert(Cell{(cell.x - minX) + (verticalEmptyLines / 2), (cell.y - minY) + ((horizontalEmptyLines + 1) / 2)});
std::set<Position> newPositions;
for (Position position : positions) {
newPositions.insert(Position{(position.x - minX) + (verticalEmptyLines / 2), (position.y - minY) + ((horizontalEmptyLines + 1) / 2)});
}
this->cells = newCells;
this->positions = newPositions;
}
void Polyomino::checkForFlattestSide(const std::vector<std::vector<int>>& linesCompleteness, bool currentFlattestSides[4], int& sideToBeOn, bool checkLeftSide) const {
// for each line
for (int j = 0; j < this->length; j++) {
// we check which sides are the flattest
int max = 0;
std::set<int> maxOwners;
for (int i = 0; i < 4; i++) {
@@ -200,7 +197,7 @@ void Polyomino::checkForFlattestSide(const std::vector<std::vector<int>>& linesC
}
}
// if there's no tie we choose this side
// if there's no tie we choose the only side
if (maxOwners.size() == 1) {
sideToBeOn = *maxOwners.begin();
return;
@@ -216,7 +213,7 @@ void Polyomino::checkForFlattestSide(const std::vector<std::vector<int>>& linesC
}
bool Polyomino::isConvex() const {
// for each line and column we check if every cells are adjacent to each others
// for each line and column we check if every squares are adjacent to each others
for (int j = 0; j < this->length; j++) {
bool startedLine = false;
bool completedLine = false;
@@ -224,7 +221,7 @@ bool Polyomino::isConvex() const {
bool completedColumn = false;
for (int i = 0; i < this->length; i++) {
// line check
if (this->cells.contains(Cell{i, j})) {
if (this->positions.contains(Position{i, j})) {
if (completedLine) return false;
else startedLine = true;
}
@@ -232,7 +229,7 @@ bool Polyomino::isConvex() const {
if (startedLine) completedLine = true;
}
// column check
if (this->cells.contains(Cell{j, i})) {
if (this->positions.contains(Position{j, i})) {
if (completedColumn) return false;
else startedColumn = true;
}
@@ -245,71 +242,65 @@ bool Polyomino::isConvex() const {
}
bool Polyomino::hasHole() const {
// add every outer cells of the square containing the polyomino
std::set<Cell> emptyCells;
// add every empty square on the outer of the box containing the polyomino
std::set<Position> emptyPositions;
for (int i = 0; i < this->length - 1; i++) {
this->tryToInsertCell(emptyCells, Cell{i, 0}); // up row
this->tryToInsertCell(emptyCells, Cell{this->length - 1, i}); // rigth column
this->tryToInsertCell(emptyCells, Cell{this->length - 1 - i, this->length - 1}); // bottom row
this->tryToInsertCell(emptyCells, Cell{0, this->length - 1 - i}); // left column
this->tryToInsertPosition(emptyPositions, Position{i, 0}); // up row
this->tryToInsertPosition(emptyPositions, Position{this->length - 1, i}); // rigth column
this->tryToInsertPosition(emptyPositions, Position{this->length - 1 - i, this->length - 1}); // bottom row
this->tryToInsertPosition(emptyPositions, Position{0, this->length - 1 - i}); // left column
}
// if we didn't reached all empty cells in the square then there was some contained within the polyomino, i.e. there was a hole
return (emptyCells.size() < (this->length * this->length) - this->cells.size());
// if we didn't reached all empty squares in the box then there was some contained within the polyomino, i.e. there was a hole
return (emptyPositions.size() < (this->length * this->length) - this->positions.size());
}
void Polyomino::tryToInsertCell(std::set<Cell>& emptyCells, const Cell& candidate) const {
// check if the cell is in the square containing the polyomino
void Polyomino::tryToInsertPosition(std::set<Position>& emptyPositions, const Position& candidate) const {
if (candidate.x >= this->length || candidate.x < 0 || candidate.y >= this->length || candidate.y < 0) return;
if (this->positions.contains(candidate) || emptyPositions.contains(candidate)) return;
// check if the cell is empty and hasn't already been tested
if (this->cells.contains(candidate) || emptyCells.contains(candidate)) return;
// adds the cell to the list of empty cells and try its neighbors
emptyCells.insert(candidate);
tryToInsertCell(emptyCells, Cell{candidate.x, candidate.y + 1});
tryToInsertCell(emptyCells, Cell{candidate.x + 1, candidate.y});
tryToInsertCell(emptyCells, Cell{candidate.x, candidate.y - 1});
tryToInsertCell(emptyCells, Cell{candidate.x - 1, candidate.y});
// if it's a new empty square, try its neighbors
emptyPositions.insert(candidate);
tryToInsertPosition(emptyPositions, Position{candidate.x, candidate.y + 1});
tryToInsertPosition(emptyPositions, Position{candidate.x + 1, candidate.y});
tryToInsertPosition(emptyPositions, Position{candidate.x, candidate.y - 1});
tryToInsertPosition(emptyPositions, Position{candidate.x - 1, candidate.y});
}
std::set<Cell> Polyomino::getCells() const {
return this->cells;
std::set<Position> Polyomino::getPositions() const {
return this->positions;
}
int Polyomino::getLength() const {
return this->length;
}
int Polyomino::getPolyominoOrder() const {
return this->cells.size();
int Polyomino::getPolyominoSize() const {
return this->positions.size();
}
bool Polyomino::operator<(const Polyomino& other) const {
// if one has an inferior length then it is deemed inferior
if (this->length != other.length) return this->length < other.length;
// else we check for all cells from left to right and top to bottom, until one has a cell that the other doesn't
// we check for all positions from left to right and top to bottom, until one has a square that the other doesn't
for (int y = this->length - 1; y >= 0; y--) {
for (int x = 0; x < this->length; x++) {
bool hasThisCell = this->cells.contains(Cell{x, y});
bool hasOtherCell = other.cells.contains(Cell{x, y});
if (hasThisCell != hasOtherCell) return hasThisCell;
bool hasThisposition = this->positions.contains(Position{x, y});
bool hasOtherposition = other.positions.contains(Position{x, y});
if (hasThisposition != hasOtherposition) return hasThisposition;
}
}
// if they are equal
return false;
}
bool Polyomino::operator ==(const Polyomino& other) const {
return this->cells == other.cells;
return this->positions == other.positions;
}
std::ostream& operator<<(std::ostream& os, const Polyomino& polyomino) {
for (int y = polyomino.length - 1; y >= 0; y--) {
for (int x = 0; x < polyomino.length; x++) {
if (polyomino.cells.contains(Cell{x, y})) {
if (polyomino.positions.contains(Position{x, y})) {
os << "*";
}
else {

View File

@@ -1,9 +1,9 @@
#pragma once
#include "Cell.h"
#include "Position.h"
#include <Vector>
#include <Set>
#include <vector>
#include <set>
#include <iostream>
@@ -12,19 +12,19 @@
*/
class Polyomino {
private:
std::set<Cell> cells; // the squares composing the polyomino, (0,0) is downleft
int length; // the size of the smallest square in which the polyomino can fit on any rotation
std::set<Position> positions; // the squares composing the polyomino, (0,0) is downleft
int length; // the size of the smallest square box in which the polyomino can fit on any rotation
public:
/**
* Creates a polyomino with the specified cells and normalizes it, wheter it is actually a polyonimo is not checked
* Creates a polyomino with the specified positions and normalizes it, wheter it is actually a polyonimo is not checked
*/
Polyomino(const std::set<Cell>& cells);
Polyomino(const std::set<Position>& positions);
/**
* Creates a polyomino with the specified cells and length, wheter it is actually a polyonimo of this length is not checked
* Creates a polyomino with the specified positions and length, wheter it is actually a polyonimo of this length is not checked
*/
Polyomino(const std::set<Cell>& cells, int length);
Polyomino(const std::set<Position>& positions, int length);
/**
* Translates the polyomino to the lowest unsigned values (lower row on y = 0, and left-most column on x = 0)
@@ -32,17 +32,17 @@ class Polyomino {
void normalize();
/**
* Rotates the polyomino 90° clockwise, the center of rotation being the middle of the square going from (0,0) to (length-1, length-1)
* Rotates the polyomino 90° clockwise, the center of rotation being the middle of the box going from (0,0) to (length-1, length-1)
*/
void rotateCW();
/**
* Rotates the polyomino 180°, the center of rotation being the middle of the square going from (0,0) to (length-1, length-1)
* Rotates the polyomino 180°, the center of rotation being the middle of the box going from (0,0) to (length-1, length-1)
*/
void rotate180();
/**
* Rotates the polyomino 90° counter-clockwise, the center of rotation being the middle of the square going from (0,0) to (length-1, length-1)
* Rotates the polyomino 90° counter-clockwise, the center of rotation being the middle of the box going from (0,0) to (length-1, length-1)
*/
void rotateCCW();
@@ -59,12 +59,14 @@ class Polyomino {
public:
/**
* Returns wheter the polyomino is convex, that is if every line and column has at most one continuous line of cells
* Check if the polyomino is convex, that is if every line and column has at most one continuous line of positions
* @return If the polyomino is convex
*/
bool isConvex() const;
/**
* Returns wheter the polyomino has at least one hole
* Check if the polyomino has at least one hole
* @return If the polyomino has at least one hole
*/
bool hasHole() const;
@@ -72,37 +74,40 @@ class Polyomino {
/**
* Auxiliary method of hasHole()
*/
void tryToInsertCell(std::set<Cell>& emptyCells, const Cell& candidate) const;
void tryToInsertPosition(std::set<Position>& emptypositions, const Position& candidate) const;
public:
/**
* Returns a copy of the cells of the polyomino
* @return A copy of the positions of the polyomino
*/
std::set<Cell> getCells() const;
std::set<Position> getPositions() const;
/**
* Returns the length of the polyomino
* @return The length of the polyomino
*/
int getLength() const;
/**
* Returns the number of squares in the polyomino
* @return The number of squares in the polyomino
*/
int getPolyominoOrder() const;
int getPolyominoSize() const;
/**
* Strict inferiority operator, a polyomino is inferior than another if it has a smaller length, or if they are the same length,
* while checking from left to right and top to bottom, is the first which has a cell while the other doesn't
* while checking from left to right and top to bottom, is the first which has a square while the other don't
* @return If the polyomino is inferior than another
*/
bool operator<(const Polyomino& other) const;
/**
* Equality operator, two polyominos are equal if they overlap, that means two polyominos of the same shape but different positions will not be equal
* Equality operator, two polyominos are equal if their positions are the same, that means two polyominos of the same shape at different places will not be equal
* @return If the polyomino is equal to another
*/
bool operator ==(const Polyomino& other) const;
/**
* Stream output operator, adds a 2D grid representing the polyomino
* @return A reference to the output stream
*/
friend std::ostream& operator<<(std::ostream& os, const Polyomino& polyomino);
};

72
src/Pieces/Position.h Normal file
View File

@@ -0,0 +1,72 @@
#pragma once
#include <iostream>
/**
* A position on a 2D grid
*/
struct Position {
int x; // x position
int y; // y position
};
/**
* Addition operator
* @return The sums of the coordinates of both positions
*/
inline Position operator+(const Position& left, const Position& right) {
return Position{left.x + right.x, left.y + right.y};
}
/**
* Additive assignation operator, adds the coordinates of the right position to the left one
* @return A reference to the left position
*/
inline Position& operator+=(Position& left, const Position& right) {
left = left + right;
return left;
}
/**
* Substraction operator
* @return The difference of the coordinate between the left and right position
*/
inline Position operator-(const Position& left, const Position& right) {
return Position{left.x - right.x, left.y - right.y};
}
/**
* Substractive assignation operator, substracts the coordinates of the right position from the left one
* @return A reference to the left position
*/
inline Position& operator-=(Position& left, const Position& right) {
left = left + right;
return left;
}
/**
* Strict inferiority operator, a position is inferior to another if it is lower or at the same height and more to the left
* @return If the left position is inferior to the right position
*/
inline bool operator<(const Position& left, const Position& right) {
return (left.x == right.x) ? (left.y < right.y) : (left.x < right.x);
}
/**
* Equality operator, two positions are equal if they have the same coordinates
* @return If the two positions are equals
*/
inline bool operator==(const Position& left, const Position& right) {
return (left.x == right.x) && (left.y == right.y);
}
/**
* Stream output operator, adds the coordinates of the position to the stream
* @return A reference to the output stream
*/
inline std::ostream& operator<<(std::ostream& os, const Position& position) {
os << "x: " << position.x << " y: " << position.y;
return os;
}

View File

@@ -13,14 +13,16 @@ enum Rotation {
/**
* Addition operator, returns a rotation corresponding to doing both rotations
* Addition operator
* @return A rotation corresponding to doing both rotations
*/
inline Rotation operator+(const Rotation& left, const Rotation& right) {
return Rotation((left + right) % 4);
}
/**
* Additive assignation operator, rotate the left rotation by the right rotation
* Additive assignation operator, rotates the left rotation by the right rotation
* @return A reference to the left rotation
*/
inline Rotation& operator+=(Rotation& left, const Rotation& right) {
left = left + right;