This repository has been archived on 2025-02-26. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
Pivot/src/Matrix.cpp
Persson-dev a1d74ec126
All checks were successful
Linux arm64 / Build (push) Successful in 30s
vectorial space to linear equation
2024-02-14 22:22:59 +01:00

269 lines
6.3 KiB
C++

#include "Matrix.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <fstream>
#include <iostream>
Matrix::Matrix(const std::string& fileNameInput) {
Load(fileNameInput);
}
Matrix::Matrix(std::size_t lignes, std::size_t colonnes) : m_Lignes(lignes), m_Colonnes(colonnes) {
m_Data.resize(m_Lignes * m_Colonnes);
}
Matrix::Matrix(std::size_t lignes, std::size_t colonnes, std::initializer_list<long double>&& initList) :
m_Lignes(lignes), m_Colonnes(colonnes) {
m_Data = initList;
m_Data.resize(m_Lignes * m_Colonnes);
}
Matrix::~Matrix() {}
Matrix Matrix::operator*(const Matrix& other) const {
if (m_Colonnes != other.m_Lignes) {
std::cerr << "Mutiplication impossible car la dimensions des matrices est incompatible" << std::endl;
}
Matrix result(m_Lignes, other.m_Colonnes);
for (std::size_t i = 0; i < m_Lignes; ++i) {
for (std::size_t j = 0; j < other.m_Colonnes; ++j) {
long double sum = 0;
for (std::size_t k = 0; k < m_Colonnes; k++) {
sum += at(i, k) * other.at(k, j);
}
result.at(i, j) = sum;
}
}
return result;
}
void Matrix::Print() const {
for (size_t i = 0; i < m_Lignes; ++i) {
std::cout << "[ ";
for (size_t j = 0; j < m_Colonnes; ++j) {
std::size_t indice = i * m_Lignes + j;
std::cout << at(i, j) << " ";
}
std::cout << "]";
std::cout << std::endl;
}
}
void Matrix::PrintDebug() {
#ifndef NDEBUG
Print();
std::cout << "\n";
#endif
}
void Matrix::Insert() {
for (size_t i = 0; i < m_Lignes; ++i) {
for (size_t j = 0; j < m_Colonnes; ++j) {
std::cin >> at(i, j);
}
std::cout << std::endl;
}
}
void Matrix::Save(const std::string& fileName) {
std::ofstream out{fileName};
if (!out) {
std::cerr << "Impossible de sauvegarder la matrice !\n";
return;
}
out << m_Lignes << " " << m_Colonnes << "\n";
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = 0; j < m_Colonnes; j++) {
out << at(i, j) << " ";
}
out << "\n";
}
}
void Matrix::Load(const std::string& filename) {
std::ifstream in{filename};
if (!in) {
std::cerr << "Impossible de charger la matrice !\n";
return;
}
in >> m_Lignes >> m_Colonnes;
m_Data.resize(m_Lignes * m_Colonnes);
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = 0; j < m_Colonnes; j++) {
in >> at(i, j);
}
}
}
void Matrix::Transpose() {
Matrix result{m_Colonnes, m_Lignes};
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = 0; j < m_Colonnes; j++) {
result.at(j, i) = at(i, j);
}
}
*this = result;
}
void Matrix::Identity() {
assert(m_Lignes == m_Colonnes);
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = i; j < m_Colonnes; j++) {
at(i, j) = i == j;
}
}
}
Matrix Matrix::Identity(std::size_t taille) {
Matrix id{taille, taille};
id.Identity();
return id;
}
bool Matrix::IsInversed() const {
for (std::size_t i = 0; i < m_Lignes; ++i) {
std::size_t j;
for (j = 0; j < m_Colonnes; ++j) {
if (!IsEqualZero(at(i, j))) {
break;
}
return false;
}
}
return true;
}
void Matrix::Augmenter(const Matrix& droite) {
assert(droite.m_Lignes == m_Lignes);
Matrix temp{m_Lignes, m_Colonnes + droite.m_Colonnes};
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = 0; j < m_Colonnes; j++) {
temp.at(i, j) = at(i, j);
}
}
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = 0; j < droite.m_Colonnes; j++) {
temp.at(i, j + m_Colonnes) = droite.at(i, j);
}
}
*this = temp;
}
bool Matrix::operator==(const Matrix& other) const {
if (m_Lignes != other.m_Lignes || m_Colonnes != other.m_Colonnes)
return false;
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = 0; j < m_Colonnes; j++) {
if (!IsEqualZero(at(i, j) - other.at(i, j)))
return false;
}
}
return true;
}
void Matrix::GaussNonJordan(bool reduite) {
int r = -1;
for (std::size_t j = 0; j < m_Colonnes; j++) {
std::size_t indice_ligne_maximum = r + 1;
// Recherche maximum
for (std::size_t i = r + 1; i < m_Lignes; i++) {
if (std::abs(at(i, j)) > std::abs(at(indice_ligne_maximum, j)))
indice_ligne_maximum = i;
}
// std::cout << "l'indice du maximum est : " << indice_ligne_maximum << "\n\n";
// Si A[k,j]≠0 alors (A[k,j] désigne la valeur de la ligne k et de la colonne j)
if (!IsEqualZero(at(indice_ligne_maximum, j))) {
r++;
// PrintDebug();
// Si k≠r alors
if (indice_ligne_maximum != r) {
// Échanger les lignes k et r (On place la ligne du pivot en position r)
// std::cout << "On échange les lignes " << indice_ligne_maximum << " et " << r << '\n';
for (std::size_t k = 0; k < m_Colonnes; k++) {
std::swap(at(indice_ligne_maximum, k), at(r, k));
}
}
// Pour i de 1 jusqu'à n (On simplifie les autres lignes)
for (std::size_t i = (reduite ? 0 : j); i < m_Lignes; i++) {
// Si i≠r alors
if (i != r) {
// Soustraire à la ligne i la ligne r multipliée par A[i,j] (de façon à
// annuler A[i,j])
for (int k = m_Colonnes - 1; k >= 0; k--) {
long double pivot = at(r, j);
long double anul = at(i, j);
at(i, k) = at(i, k) * pivot - at(r, k) * anul;
}
}
}
}
}
}
void Matrix::GaussJordan(bool reduite) {
GaussNonJordan(reduite);
for (std::size_t i = 0; i < m_Lignes; i++) {
int k = -1;
for (std::size_t j = 0; j < m_Colonnes; j++) {
if (!IsEqualZero(at(i, j))) {
k = j;
break;
}
}
// ligne de 0
if (k == -1)
break;
// on divise la ligne par (i, k)
long double annul = at(i, k);
for (int j = 0; j < m_Colonnes; j++) {
at(i, j) /= annul;
}
}
}
long double& Matrix::operator[](std::size_t indice) {
return m_Data[indice];
}
long double& Matrix::at(std::size_t ligne, std::size_t colonne) {
return m_Data[ligne * m_Colonnes + colonne];
}
long double Matrix::at(std::size_t ligne, std::size_t colonne) const {
return m_Data[ligne * m_Colonnes + colonne];
}
std::size_t Matrix::GetRawCount() const {
return m_Lignes;
}
std::size_t Matrix::GetColumnCount() const {
return m_Colonnes;
}
Matrix Matrix::SubMatrix(std::size_t origine_ligne, std::size_t origine_colonne, std::size_t ligne, std::size_t colonne) const {
assert(m_Lignes >= ligne && m_Colonnes >= colonne);
Matrix result{ligne, colonne};
for (std::size_t i = 0; i < ligne; i++) {
for (std::size_t j = 0; j < colonne; j++) {
result.at(i, j) = at(i + origine_ligne, j + origine_colonne);
}
}
return result;
}