#include "Matrix.h" #include #include #include #include #include Matrix::Matrix(const std::string& fileNameInput) { Load(fileNameInput); } Matrix::Matrix(std::size_t lignes, std::size_t colonnes) : m_Lignes(lignes), m_Colonnes(colonnes) { m_Data.resize(m_Lignes * m_Colonnes); } Matrix::Matrix(std::size_t lignes, std::size_t colonnes, std::initializer_list&& initList) : m_Lignes(lignes), m_Colonnes(colonnes) { m_Data = initList; m_Data.resize(m_Lignes * m_Colonnes); } Matrix::~Matrix() {} Matrix Matrix::operator*(const Matrix& other) const { if (m_Colonnes != other.m_Lignes) { std::cerr << "Mutiplication impossible car la dimensions des matrices est incompatible" << std::endl; } Matrix result(m_Lignes, other.m_Colonnes); for (std::size_t i = 0; i < m_Lignes; ++i) { for (std::size_t j = 0; j < other.m_Colonnes; ++j) { long double sum = 0; for (std::size_t k = 0; k < m_Colonnes; k++) { sum += at(i, k) * other.at(k, j); } result.at(i, j) = sum; } } return result; } void Matrix::Print() const { for (size_t i = 0; i < m_Lignes; ++i) { std::cout << "[ "; for (size_t j = 0; j < m_Colonnes; ++j) { std::size_t indice = i * m_Lignes + j; std::cout << at(i, j) << " "; } std::cout << "]"; std::cout << std::endl; } } void Matrix::PrintDebug() { #ifndef NDEBUG Print(); std::cout << "\n"; #endif } void Matrix::Insert() { for (size_t i = 0; i < m_Lignes; ++i) { for (size_t j = 0; j < m_Colonnes; ++j) { std::cin >> at(i, j); } std::cout << std::endl; } } void Matrix::Save(const std::string& fileName) { std::ofstream out{fileName}; if (!out) { std::cerr << "Impossible de sauvegarder la matrice !\n"; return; } out << m_Lignes << " " << m_Colonnes << "\n"; for (std::size_t i = 0; i < m_Lignes; i++) { for (std::size_t j = 0; j < m_Colonnes; j++) { out << at(i, j) << " "; } out << "\n"; } } void Matrix::Load(const std::string& filename) { std::ifstream in{filename}; if (!in) { std::cerr << "Impossible de charger la matrice !\n"; return; } in >> m_Lignes >> m_Colonnes; m_Data.resize(m_Lignes * m_Colonnes); for (std::size_t i = 0; i < m_Lignes; i++) { for (std::size_t j = 0; j < m_Colonnes; j++) { in >> at(i, j); } } } void Matrix::Transpose() { Matrix result{m_Colonnes, m_Lignes}; for (std::size_t i = 0; i < m_Lignes; i++) { for (std::size_t j = 0; j < m_Colonnes; j++) { result.at(j, i) = at(i, j); } } *this = result; } void Matrix::Identity() { assert(m_Lignes == m_Colonnes); for (std::size_t i = 0; i < m_Lignes; i++) { for (std::size_t j = i; j < m_Colonnes; j++) { at(i, j) = i == j; } } } Matrix Matrix::Identity(std::size_t taille) { Matrix id{taille, taille}; id.Identity(); return id; } bool Matrix::IsInversed() const { for (std::size_t i = 0; i < m_Lignes; ++i) { std::size_t j; for (j = 0; j < m_Colonnes; ++j) { if (!IsEqualZero(at(i, j))) { break; } return false; } } return true; } void Matrix::Augmenter(const Matrix& droite) { assert(droite.m_Lignes == m_Lignes); Matrix temp{m_Lignes, m_Colonnes + droite.m_Colonnes}; for (std::size_t i = 0; i < m_Lignes; i++) { for (std::size_t j = 0; j < m_Colonnes; j++) { temp.at(i, j) = at(i, j); } } for (std::size_t i = 0; i < m_Lignes; i++) { for (std::size_t j = 0; j < droite.m_Colonnes; j++) { temp.at(i, j + m_Colonnes) = droite.at(i, j); } } *this = temp; } bool Matrix::operator==(const Matrix& other) const { if (m_Lignes != other.m_Lignes || m_Colonnes != other.m_Colonnes) return false; for (std::size_t i = 0; i < m_Lignes; i++) { for (std::size_t j = 0; j < m_Colonnes; j++) { if (!IsEqualZero(at(i, j) - other.at(i, j))) return false; } } return true; } void Matrix::GaussNonJordan(bool reduite) { int r = -1; for (std::size_t j = 0; j < m_Colonnes; j++) { std::size_t indice_ligne_maximum = r + 1; // Recherche maximum for (std::size_t i = r + 1; i < m_Lignes; i++) { if (std::abs(at(i, j)) > std::abs(at(indice_ligne_maximum, j))) indice_ligne_maximum = i; } // std::cout << "l'indice du maximum est : " << indice_ligne_maximum << "\n\n"; // Si A[k,j]≠0 alors (A[k,j] désigne la valeur de la ligne k et de la colonne j) if (!IsEqualZero(at(indice_ligne_maximum, j))) { r++; // PrintDebug(); // Si k≠r alors if (indice_ligne_maximum != r) { // Échanger les lignes k et r (On place la ligne du pivot en position r) // std::cout << "On échange les lignes " << indice_ligne_maximum << " et " << r << '\n'; for (std::size_t k = 0; k < m_Colonnes; k++) { std::swap(at(indice_ligne_maximum, k), at(r, k)); } } // Pour i de 1 jusqu'à n (On simplifie les autres lignes) for (std::size_t i = (reduite ? 0 : j); i < m_Lignes; i++) { // Si i≠r alors if (i != r) { // Soustraire à la ligne i la ligne r multipliée par A[i,j] (de façon à // annuler A[i,j]) for (int k = m_Colonnes - 1; k >= 0; k--) { long double pivot = at(r, j); long double anul = at(i, j); at(i, k) = at(i, k) * pivot - at(r, k) * anul; } } } } } } void Matrix::GaussJordan(bool reduite) { GaussNonJordan(reduite); for (std::size_t i = 0; i < m_Lignes; i++) { int k = -1; for (std::size_t j = 0; j < m_Colonnes; j++) { if (!IsEqualZero(at(i, j))) { k = j; break; } } // ligne de 0 if (k == -1) break; // on divise la ligne par (i, k) long double annul = at(i, k); for (int j = 0; j < m_Colonnes; j++) { at(i, j) /= annul; } } } long double& Matrix::operator[](std::size_t indice) { return m_Data[indice]; } long double& Matrix::at(std::size_t ligne, std::size_t colonne) { return m_Data[ligne * m_Colonnes + colonne]; } long double Matrix::at(std::size_t ligne, std::size_t colonne) const { return m_Data[ligne * m_Colonnes + colonne]; } std::size_t Matrix::GetRawCount() const { return m_Lignes; } std::size_t Matrix::GetColumnCount() const { return m_Colonnes; } Matrix Matrix::SubMatrix(std::size_t origine_ligne, std::size_t origine_colonne, std::size_t ligne, std::size_t colonne) const { assert(m_Lignes >= ligne && m_Colonnes >= colonne); Matrix result{ligne, colonne}; for (std::size_t i = 0; i < ligne; i++) { for (std::size_t j = 0; j < colonne; j++) { result.at(i, j) = at(i + origine_ligne, j + origine_colonne); } } return result; }