nr take 2
All checks were successful
Linux arm64 / Build (push) Successful in 40s

This commit is contained in:
Pierre CHATAIGNER
2024-02-25 13:16:48 +01:00
19 changed files with 659 additions and 160 deletions

View File

@@ -7,6 +7,8 @@ ConstructorInitializerAllOnOneLineOrOnePerLine: true
PointerAlignment: Left
SortIncludes: true
SpacesBeforeTrailingComments: 2
SeparateDefinitionBlocks: Always
SpaceBeforeCpp11BracedList: true
UseTab: Always
MaxEmptyLinesToKeep: 5

View File

@@ -0,0 +1,29 @@
name: Linux arm64
run-name: Build And Test
on: [push]
jobs:
Build:
runs-on: ubuntu-latest
steps:
- name: Check out repository code
uses: actions/checkout@v3
- name: Prepare XMake
uses: xmake-io/github-action-setup-xmake@v1
with:
xmake-version: latest
actions-cache-folder: '.xmake-cache'
actions-cache-key: 'ubuntu'
- name: XMake config
run: xmake f -p linux -y --root
- name: Build
run: xmake --root
- name: Test
run: |
xmake f -m debug --root
xmake test --root

3
.gitignore vendored
View File

@@ -5,4 +5,5 @@ build/
# MacOS Cache
.DS_Store
# VsCode
.vscode

View File

@@ -2,4 +2,16 @@
# Cahier des charges
![imagecdc](PeiP2_MAM-INFO_projet_02.jpg)
![imagecdc](PeiP2_MAM-INFO_projet_02.jpg)
# Build
```
xmake
```
# Run
```
xmake run
```

View File

@@ -0,0 +1,12 @@
2 3
1 2 3
4 5 6
2 2
0 1
1 0
3 1
1
-2
1

75
src/Gauss.cpp Normal file
View File

@@ -0,0 +1,75 @@
#include "Gauss.h"
#include "Matrix.h"
namespace Gauss {
static void GaussNonJordan(Matrix& mat, bool reduite) {
int r = -1;
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
std::size_t indice_ligne_maximum = r + 1;
// Recherche maximum
for (std::size_t i = r + 1; i < mat.GetRawCount(); i++) {
if (std::abs(mat.at(i, j)) > std::abs(mat.at(indice_ligne_maximum, j)))
indice_ligne_maximum = i;
}
// Si A[k,j]≠0 alors (A[k,j] désigne la valeur de la ligne k et de la colonne j)
if (!IsEqualZero(mat.at(indice_ligne_maximum, j))) {
r++;
// Si k≠r alors
if (indice_ligne_maximum != r) {
// Échanger les lignes k et r (On place la ligne du pivot en position r)
for (std::size_t k = 0; k < mat.GetColumnCount(); k++) {
std::swap(mat.at(indice_ligne_maximum, k), mat.at(r, k));
}
}
// Pour i de 1 jusqu'à n (On simplifie les autres lignes)
for (std::size_t i = (reduite ? 0 : j); i < mat.GetRawCount(); i++) {
// Si i≠r alors
if (i != r) {
// Soustraire à la ligne i la ligne r multipliée par A[i,j] (de façon à
// annuler A[i,j])
for (int k = mat.GetColumnCount() - 1; k >= 0; k--) {
long double pivot = mat.at(r, j);
long double anul = mat.at(i, j);
mat.at(i, k) = mat.at(i, k) * pivot - mat.at(r, k) * anul;
}
}
}
}
}
}
static void GaussJordan(Matrix& mat, bool reduite) {
GaussNonJordan(mat, reduite);
for (std::size_t i = 0; i < mat.GetRawCount(); i++) {
int k = -1;
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
if (!IsEqualZero(mat.at(i, j))) {
k = j;
break;
}
}
// ligne de 0
if (k == -1)
break;
// on divise la ligne par (i, k)
long double annul = mat.at(i, k);
for (int j = 0; j < mat.GetColumnCount(); j++) {
mat.at(i, j) /= annul;
}
}
}
void GaussJordan(Matrix& mat, bool reduite, bool normalise) {
if (normalise)
GaussJordan(mat, reduite);
else
GaussNonJordan(mat, reduite);
}
} // namespace Gauss

9
src/Gauss.h Normal file
View File

@@ -0,0 +1,9 @@
#pragma once
class Matrix;
namespace Gauss {
void GaussJordan(Matrix& mat, bool reduite, bool normalise);
} // namespace Gauss

View File

@@ -1,35 +1,39 @@
#include "Matrix.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <fstream>
#include <iostream>
#include "Matrix.h"
Matrix::Matrix(const std::string& fileNameInput) {
Load(fileNameInput);
}
Matrix::Matrix(std::size_t lignes, std::size_t colonnes) : m_Lignes(lignes), m_Colonnes(colonnes), m_Dimension(lignes * colonnes) {
m_Data.resize(m_Dimension);
Matrix::Matrix(std::size_t lignes, std::size_t colonnes) : m_Raws(lignes), m_Columns(colonnes) {
m_Data.resize(m_Raws * m_Columns);
}
Matrix::Matrix(std::size_t lignes, std::size_t colonnes, std::initializer_list<long double>&& initList) :
m_Lignes(lignes), m_Colonnes(colonnes), m_Dimension(lignes * colonnes) {
m_Raws(lignes), m_Columns(colonnes) {
m_Data = initList;
m_Data.resize(m_Dimension);
m_Data.resize(m_Raws * m_Columns);
}
Matrix::~Matrix() {}
Matrix Matrix::operator*(const Matrix& other) const {
if (m_Colonnes != other.m_Lignes) {
if (m_Columns != other.m_Raws) {
std::cerr << "Mutiplication impossible car la dimensions des matrices est incompatible" << std::endl;
return {1, 1, {0}};
}
Matrix result(m_Lignes, other.m_Colonnes);
Matrix result(m_Raws, other.m_Columns);
for (std::size_t i = 0; i < m_Lignes; ++i) {
for (std::size_t j = 0; j < other.m_Colonnes; ++j) {
for (std::size_t i = 0; i < m_Raws; ++i) {
for (std::size_t j = 0; j < other.m_Columns; ++j) {
long double sum = 0;
for (std::size_t k = 0; k < m_Colonnes; k++) {
for (std::size_t k = 0; k < m_Columns; k++) {
sum += at(i, k) * other.at(k, j);
}
result.at(i, j) = sum;
@@ -38,15 +42,11 @@ Matrix Matrix::operator*(const Matrix& other) const {
return result;
}
static bool IsEqualZero(long double var) {
return std::abs(var) < std::pow(10, -5);
}
void Matrix::Print() const {
for (size_t i = 0; i < m_Lignes; ++i) {
for (size_t i = 0; i < m_Raws; ++i) {
std::cout << "[ ";
for (size_t j = 0; j < m_Colonnes; ++j) {
std::size_t indice = i * m_Lignes + j;
for (size_t j = 0; j < m_Columns; ++j) {
std::size_t indice = i * m_Raws + j;
std::cout << at(i, j) << " ";
}
std::cout << "]";
@@ -54,16 +54,9 @@ void Matrix::Print() const {
}
}
void Matrix::PrintDebug() {
#ifndef NDEBUG
Print();
std::cout << "\n";
#endif
}
void Matrix::Insert() {
for (size_t i = 0; i < m_Lignes; ++i) {
for (size_t j = 0; j < m_Colonnes; ++j) {
for (size_t i = 0; i < m_Raws; ++i) {
for (size_t j = 0; j < m_Columns; ++j) {
std::cin >> at(i, j);
}
std::cout << std::endl;
@@ -71,142 +64,127 @@ void Matrix::Insert() {
}
void Matrix::Save(const std::string& fileName) {
std::ofstream out{fileName};
std::ofstream out {fileName};
if (!out) {
std::cerr << "Impossible de sauvegarder la matrice !\n";
return;
}
out << m_Lignes << " " << m_Colonnes << "\n";
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = 0; j < m_Colonnes; j++) {
out << at(i, j) << " ";
}
out << "\n";
}
out << *this;
}
void Matrix::Load(const std::string& filename) {
std::ifstream in{filename};
std::ifstream in {filename};
if (!in) {
std::cerr << "Impossible de charger la matrice !\n";
return;
}
in >> m_Lignes >> m_Colonnes;
m_Data.resize(m_Lignes * m_Colonnes);
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = 0; j < m_Colonnes; j++) {
in >> at(i, j);
}
}
in >> *this;
}
void Matrix::Transpose() {
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = i; j < m_Colonnes; j++) {
std::swap(at(i, j), at(j, i));
Matrix result {m_Columns, m_Raws};
for (std::size_t i = 0; i < m_Raws; i++) {
for (std::size_t j = 0; j < m_Columns; j++) {
result.at(j, i) = at(i, j);
}
}
*this = result;
}
void Matrix::Identity() {
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = i; j < m_Colonnes; j++) {
if (i != j) {
at(i, j) = 0;
} else {
at(i, j) = 1;
}
Matrix Matrix::Identity(std::size_t taille) {
Matrix id {taille, taille};
for (std::size_t i = 0; i < taille; i++) {
for (std::size_t j = i; j < taille; j++) {
id.at(i, j) = (i == j);
}
}
return id;
}
bool Matrix::IsInversed() const {
for (std::size_t i = 0; i < m_Lignes; ++i) {
std::size_t j;
for (j = 0; j < m_Colonnes; ++j) {
if (!IsEqualZero(at(i, j))) {
break;
}
return false;
void Matrix::Augment(const Matrix& droite) {
assert(droite.m_Raws == m_Raws);
Matrix temp {m_Raws, m_Columns + droite.m_Columns};
for (std::size_t i = 0; i < m_Raws; i++) {
for (std::size_t j = 0; j < m_Columns; j++) {
temp.at(i, j) = at(i, j);
}
}
for (std::size_t i = 0; i < m_Raws; i++) {
for (std::size_t j = 0; j < droite.m_Columns; j++) {
temp.at(i, j + m_Columns) = droite.at(i, j);
}
}
*this = temp;
}
bool Matrix::operator==(const Matrix& other) const {
if (m_Raws != other.m_Raws || m_Columns != other.m_Columns)
return false;
for (std::size_t i = 0; i < m_Raws; i++) {
for (std::size_t j = 0; j < m_Columns; j++) {
if (!IsEqualZero(at(i, j) - other.at(i, j)))
return false;
}
}
return true;
}
void Matrix::GaussNonJordan(bool reduite) {
int r = -1;
for (std::size_t j = 0; j < m_Colonnes; j++) {
std::size_t indice_ligne_maximum = r + 1;
// Recherche maximum
for (std::size_t i = r + 1; i < m_Lignes; i++) {
if (std::abs(at(i, j)) > std::abs(at(indice_ligne_maximum, j)))
indice_ligne_maximum = i;
}
// std::cout << "l'indice du maximum est : " << indice_ligne_maximum << "\n\n";
// Si A[k,j]≠0 alors (A[k,j] désigne la valeur de la ligne k et de la colonne j)
if (!IsEqualZero(at(indice_ligne_maximum, j))) {
r++;
// PrintDebug();
// Si k≠r alors
if (indice_ligne_maximum != r) {
// Échanger les lignes k et r (On place la ligne du pivot en position r)
// std::cout << "On échange les lignes " << indice_ligne_maximum << " et " << r << '\n';
for (std::size_t k = 0; k < m_Colonnes; k++) {
std::swap(at(indice_ligne_maximum, k), at(r, k));
}
}
// Pour i de 1 jusqu'à n (On simplifie les autres lignes)
for (std::size_t i = (reduite ? 0 : j); i < m_Lignes; i++) {
// Si i≠r alors
if (i != r) {
// Soustraire à la ligne i la ligne r multipliée par A[i,j] (de façon à
// annuler A[i,j])
for (int k = m_Colonnes - 1; k >= 0; k--) {
long double pivot = at(r, j);
long double anul = at(i, j);
at(i, k) = at(i, k) * pivot - at(r, k) * anul;
}
}
}
}
}
}
void Matrix::GaussJordan(bool reduite) {
GaussNonJordan(reduite);
for (std::size_t i = 0; i < m_Lignes; i++) {
int k = -1;
for (std::size_t j = 0; j < m_Colonnes; j++) {
if (!IsEqualZero(at(i, j))) {
k = j;
break;
}
}
// ligne de 0
if (k == -1)
break;
// on divise la ligne par (i, k)
long double annul = at(i, k);
for (int j = 0; j < m_Colonnes; j++) {
at(i, j) /= annul;
}
}
}
long double& Matrix::operator[](std::size_t indice) {
return m_Data[indice];
}
long double& Matrix::at(std::size_t ligne, std::size_t colonne) {
return m_Data[ligne * m_Lignes + colonne];
return m_Data[ligne * m_Columns + colonne];
}
long double Matrix::at(std::size_t ligne, std::size_t colonne) const {
return m_Data[ligne * m_Lignes + colonne];
}
return m_Data[ligne * m_Columns + colonne];
}
std::size_t Matrix::GetRawCount() const {
return m_Raws;
}
std::size_t Matrix::GetColumnCount() const {
return m_Columns;
}
Matrix Matrix::SubMatrix(std::size_t origine_ligne, std::size_t origine_colonne, std::size_t ligne, std::size_t colonne) const {
assert(m_Raws >= ligne && m_Columns >= colonne);
Matrix result {ligne, colonne};
for (std::size_t i = 0; i < ligne; i++) {
for (std::size_t j = 0; j < colonne; j++) {
result.at(i, j) = at(i + origine_ligne, j + origine_colonne);
}
}
return result;
}
std::ostream& operator<<(std::ostream& stream, const Matrix& mat) {
stream << mat.m_Raws << " " << mat.m_Columns << "\n";
for (std::size_t i = 0; i < mat.m_Raws; i++) {
for (std::size_t j = 0; j < mat.m_Columns; j++) {
stream << mat.at(i, j) << " ";
}
stream << "\n";
}
return stream;
}
std::istream& operator>>(std::istream& stream, Matrix& mat) {
stream >> mat.m_Raws >> mat.m_Columns;
mat.m_Data.resize(mat.m_Raws * mat.m_Columns);
for (std::size_t i = 0; i < mat.m_Raws; i++) {
for (std::size_t j = 0; j < mat.m_Columns; j++) {
stream >> mat.at(i, j);
}
}
return stream;
}

View File

@@ -1,48 +1,51 @@
#pragma once
#include <cmath>
#include <cstddef>
#include <string>
#include <vector>
class Matrix {
private:
std::size_t m_Lignes;
std::size_t m_Colonnes;
std::size_t m_Dimension;
std::size_t m_Raws;
std::size_t m_Columns;
std::vector<long double> m_Data;
public:
Matrix(const std::string& fileNameInput);
Matrix(std::size_t lignes, std::size_t colonnes);
Matrix(std::size_t lignes, std::size_t colonnes, std::initializer_list<long double>&& initList);
Matrix(std::size_t raws, std::size_t columns);
Matrix(std::size_t raws, std::size_t columns, std::initializer_list<long double>&& initList);
~Matrix();
Matrix operator*(const Matrix& other) const;
void GaussNonJordan(bool reduite);
void GaussJordan(bool reduite);
void Print() const;
void PrintDebug();
std::size_t GetRawCount() const;
std::size_t GetColumnCount() const;
void Insert();
void Print() const;
void Save(const std::string& fileName);
void Load(const std::string& filename);
void Transpose();
void Identity();
static Matrix Identity(std::size_t size);
bool IsInversed() const;
void Augment(const Matrix& right);
long double& operator[](std::size_t indice);
Matrix SubMatrix(std::size_t raw_origin, std::size_t column_origin, std::size_t raw, std::size_t column) const;
long double& at(std::size_t ligne, std::size_t colonne);
bool operator==(const Matrix& other) const;
Matrix operator*(const Matrix& other) const;
long double& operator[](std::size_t index);
long double at(std::size_t ligne, std::size_t colonne) const;
long double& at(std::size_t raw, std::size_t column);
long double at(std::size_t raw, std::size_t column) const;
friend std::ostream& operator<<(std::ostream& stream, const Matrix& mat);
friend std::istream& operator>>(std::istream& stream, Matrix& mat);
};
static bool IsEqualZero(long double var);
template <typename T>
bool IsEqualZero(T var) {
return std::abs(var) < std::pow(10, -5);
}

View File

@@ -9,6 +9,7 @@ class NR {
public:
NR() : m_Numerator(0), m_Denominator(1) {}
NR(int entier) : m_Numerator(entier), m_Denominator(1) {}
NR(int numerator, int denominator); //check if denominator != 0
void NRset(int numerator, int denominator); //same
@@ -39,4 +40,4 @@ class NR {
static void test();
};
int PGCD(int x, int y);
int PGCD(int x, int y);

45
src/Solver.cpp Normal file
View File

@@ -0,0 +1,45 @@
#include "Solver.h"
#include "Gauss.h"
Solver::Solver(const Matrix& mat) : m_Matrix(mat) {}
Vect Solver::Image() const {
Matrix result = m_Matrix;
result.Transpose();
Gauss::GaussJordan(result, true, true);
result.Transpose();
return {result};
}
// https://en.wikipedia.org/wiki/Kernel_(linear_algebra)#Computation_by_Gaussian_elimination
Vect Solver::Kernel() const {
Matrix result = m_Matrix;
result.Transpose();
result.Augment(Matrix::Identity(result.GetRawCount()));
Gauss::GaussJordan(result, true, true);
result.Transpose();
// nombre de colonnes non nulles
std::size_t origine_colonne = Vect(result.SubMatrix(0, 0, m_Matrix.GetRawCount(), m_Matrix.GetColumnCount())).GetCardinal();
return {result.SubMatrix(m_Matrix.GetRawCount(), origine_colonne, result.GetRawCount() - m_Matrix.GetRawCount(),
result.GetColumnCount() - origine_colonne)};
}
VectAffine Solver::TriangularSystem() const {
Matrix mat = m_Matrix;
Gauss::GaussJordan(mat, true, true);
Solver solver {mat.SubMatrix(0, 0, mat.GetRawCount(), mat.GetColumnCount() - 1)};
Vect noyau = solver.Kernel();
Matrix origin = mat.SubMatrix(0, mat.GetColumnCount() - 1, mat.GetRawCount(), 1);
return {noyau, origin};
}
std::size_t Solver::Rank() const {
Vect image = Image();
return image.GetCardinal();
}

20
src/Solver.h Normal file
View File

@@ -0,0 +1,20 @@
#pragma once
#include "Vect.h"
class Solver {
private:
Matrix m_Matrix;
public:
Solver(const Matrix& mat);
~Solver() {}
Vect Image() const;
Vect Kernel() const;
VectAffine TriangularSystem() const;
std::size_t Rank() const;
};

90
src/Vect.cpp Normal file
View File

@@ -0,0 +1,90 @@
#include "Vect.h"
#include "Gauss.h"
#include "Solver.h"
#include <cassert>
#include <iostream>
Vect::Vect(const Matrix& mat) : m_Data(mat) {
Simplify();
}
void Vect::Simplify() {
Matrix mat = m_Data;
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
std::size_t i;
for (i = 0; i < mat.GetRawCount(); i++) {
if (!IsEqualZero(mat.at(i, j)))
break;
}
if (i == mat.GetRawCount()) {
m_Data = mat.SubMatrix(0, 0, mat.GetRawCount(), j);
return;
}
}
m_Data = mat;
}
std::size_t Vect::GetCardinal() const {
return m_Data.GetColumnCount();
}
bool Vect::operator==(const Vect& other) const {
if (GetDimension() != other.GetDimension() || GetCardinal() != other.GetCardinal())
return false;
// on vérifie si chaque vecteur de la deuxième base appartient à la première base
for (std::size_t i = 0; i < GetCardinal(); i++) {
Vect base = *this;
base.AddVector(other.m_Data.SubMatrix(0, i, GetDimension(), 1));
if (base.GetCardinal() != GetCardinal())
return false;
}
return true;
}
void Vect::AddVector(const Matrix& mat) {
m_Data.Augment(mat);
m_Data.Transpose();
Gauss::GaussJordan(m_Data, false, false);
m_Data.Transpose();
Simplify();
}
bool Vect::operator!=(const Vect& other) const {
return !(*this == other);
}
Matrix Vect::GetLinearSystem() const {
Matrix vect = m_Data;
vect.Transpose();
Solver solver {vect};
vect = solver.Kernel().m_Data;
vect.Transpose();
return vect;
}
void Vect::Print() const {
std::cout << "Espace vectoriel de dimension " << GetCardinal() << " de base :\n\n";
for (std::size_t i = 0; i < m_Data.GetRawCount(); i++) {
for (std::size_t j = 0; j < m_Data.GetColumnCount(); j++) {
std::cout << "[ " << m_Data.at(i, j) << " ]\t";
}
std::cout << "\n";
}
}
std::size_t Vect::GetDimension() const {
return m_Data.GetRawCount();
}
VectAffine::VectAffine(const Vect& base, const Matrix& origine) :
m_Base(base), m_Origin(origine.SubMatrix(0, 0, m_Base.GetDimension(), 1)) {}
void VectAffine::Print() const {
std::cout << "\tEspace Affine :\n\n";
m_Base.Print();
std::cout << "\nOrigine :\n\n";
m_Origin.Print();
}

58
src/Vect.h Normal file
View File

@@ -0,0 +1,58 @@
#pragma once
#include "Matrix.h"
// espace vectoriel
class Vect {
private:
Matrix m_Data;
public:
/**
* \brief Construit une base d'un espace vectoriel à partir des colonnes d'une matrice.
* Ne prend pas en compte les colonnes de 0
* \param mat Une matrice échelonnée.
*/
Vect(const Matrix& mat);
/**
* \brief Affiche la base de l'espace vectoriel dans la console
*/
void Print() const;
std::size_t GetDimension() const;
std::size_t GetCardinal() const;
Matrix GetLinearSystem() const;
/**
* \brief Concatène la base actuelle avec un nouveau vecteur
* \param mat Une matrice colonne de taille GetDimension()
*/
void AddVector(const Matrix& mat);
bool operator==(const Vect& other) const;
bool operator!=(const Vect& other) const;
private:
void Simplify();
};
class VectAffine {
private:
Vect m_Base;
Matrix m_Origin;
public:
VectAffine(const Vect& base, const Matrix& origin);
void Print() const;
const Vect& GetBase() const {
return m_Base;
}
const Matrix& GetOrigin() const {
return m_Origin;
}
};

View File

@@ -1,9 +1,11 @@
#include "Matrix.h"
#include "NR.h"
#include "Gauss.h"
#include "Solver.h"
#include <iostream>
void test() {
Matrix mat{"matrice4x4.mat"};
/* Matrix mat{"matrice4x4.mat"};
mat.Print();
// mat.Save("matrice3x3.mat");
std::cout << "sdfdjiofoseifheoiefhoig\n";
@@ -15,7 +17,27 @@ void test() {
mat.Transpose();
std::cout << "<<\nTransposée:\n";
mat.Print();
// mat.Save("matrice4x4echelonne.mat");
// mat.Save("matrice4x4echelonne.mat"); */
Matrix mat2 {"matrice4x4.mat"};
mat2.Print();
Solver solver {mat2};
Vect image = solver.Image();
Vect noyau = solver.Kernel();
std::cout << "\tImage :\n";
image.Print();
std::cout << "Système :\n";
image.GetLinearSystem().Print();
std::cout << "\tNoyau :\n";
noyau.Print();
std::cout << "Système :\n";
noyau.GetLinearSystem().Print();
std::cout << "\n\n";
solver.TriangularSystem().Print();
}
void prompt() {
@@ -33,7 +55,7 @@ void prompt() {
mat.Print();
mat.GaussJordan(true);
Gauss::GaussJordan(mat, true, true);
mat.Print();
}

47
test/test_jordan.cpp Normal file
View File

@@ -0,0 +1,47 @@
#include "Gauss.h"
#include "Matrix.h"
#include <cassert>
#ifdef NDEBUG
#error "Il faut être en debug mode ! xmake f -m debug"
#endif
struct Test {
Matrix mat;
Matrix res;
};
static const std::vector<Test> TEST_MATRICES = {
// test 1
{{3, 3, {
1, 2, 3,
4, 5, 6,
7, 8, 9,
}}, {3, 3, {
1, 0, -1,
0, 1, 2,
0, 0, 0,
}}},
// test 2
{{3, 3, {
4, 5, 6,
1, 2, 3,
7, 8, 9,
}}, {3, 3, {
1, 0, -1,
0, 1, 2,
0, 0, 0,
}}}
};
void test() {
for (Test test : TEST_MATRICES) {
Gauss::GaussJordan(test.mat, true, true);
assert(test.mat == test.res);
}
}
int main(int argc, char** argv) {
test();
return 0;
}

31
test/test_solver.cpp Normal file
View File

@@ -0,0 +1,31 @@
#include <cassert>
#include <filesystem>
#include <fstream>
#include <iostream>
#include "Solver.h"
namespace fs = std::filesystem;
int main() {
std::string path = "test";
for (const auto& entry : fs::directory_iterator(path)) {
std::string fileName = entry.path().string();
std::cout << "Opening " << fileName << " ...\n";
std::ifstream in {fileName};
Matrix mat {1, 1}, imageMat {1, 1}, noyauMat {1, 1};
in >> mat >> imageMat >> noyauMat;
Vect image {imageMat};
Vect noyau {noyauMat};
Solver solver {mat};
assert(solver.Image() == image);
assert(solver.Kernel() == noyau);
}
return 0;
}

31
test/test_vect.cpp Normal file
View File

@@ -0,0 +1,31 @@
#include "Vect.h"
#include <cassert>
int main() {
Vect vect1 {{3, 2, {
1, 2,
3, 4,
5, 6,
}}};
Vect vect2 {{3, 2, {
1, 0,
0, 0,
0, 1,
}}};
Vect vect3 {{3, 2, {
1, 3,
3, 7,
5, 11,
}}};
Vect vect4 {{3, 2, {
1, 0,
0, 0,
1, 11,
}}};
assert(vect1 == vect3);
assert(vect2 == vect4);
assert(vect1 != vect2);
assert(vect2 != vect3);
assert(vect3 != vect4);
return 0;
}

View File

@@ -1,10 +1,43 @@
add_rules("mode.debug", "mode.release")
set_languages("c++17")
-- Solver Library
target("Pivot")
set_kind("binary")
set_kind("static")
add_files("src/*.cpp")
remove_files("src/main.cpp")
-- Solver Main
target("PivotMain")
set_rundir("$(projectdir)/matricies")
set_languages("c++17")
add_files("src/main.cpp")
add_deps("Pivot")
set_default(true)
-- Solver tests
for _, file in ipairs(os.files("test/test_*.cpp")) do
local name = path.basename(file)
target(name)
set_kind("binary")
add_files("test/" .. name .. ".cpp")
set_rundir("$(projectdir)/matricies")
add_includedirs("src")
set_default(false)
add_deps("Pivot")
add_tests("compile_and_run")
end
--
-- If you want to known more usage about xmake, please see https://xmake.io