129 lines
5.2 KiB
Python
129 lines
5.2 KiB
Python
from networks.geometry.Point2D import Point2D
|
|
|
|
from math import sqrt, inf
|
|
import numpy as np
|
|
|
|
|
|
class Polyline:
|
|
def __init__(self, points: list["Point2D"]):
|
|
"""A polyline with smooth corners, only composed of segments and circle arc.
|
|
|
|
Mathematics and algorithms behind this can be found here: https://cdr.lib.unc.edu/concern/dissertations/pz50gw814?locale=en, E2 Construction of arc roads from polylines, page 210.
|
|
|
|
Args:
|
|
points (List[Point2D]): List of 2d-points in order describing the polyline.
|
|
|
|
Raises:
|
|
ValueError: At least 4 points required.
|
|
|
|
>>> Polyline((Point2D(0, 0), Point2D(0, 10), Point2D(50, 10), Point2D(20, 20)))
|
|
"""
|
|
self.coordinates = points
|
|
self.points = Point2D.to_vectors(points)
|
|
self.length_polyline = len(points)
|
|
|
|
if self.length_polyline < 4:
|
|
raise ValueError("The list must contain at least 4 elements.")
|
|
|
|
self.vectors = [None] * self.length_polyline # v
|
|
self.lengths = [None] * self.length_polyline # l
|
|
self.unit_vectors = [None] * self.length_polyline # n
|
|
self.tangente = [0] * self.length_polyline # f
|
|
|
|
self.alpha_radii = [None] * self.length_polyline # alpha
|
|
|
|
self.radii = [None] * self.length_polyline # r
|
|
self.centers = [None] * self.length_polyline # c
|
|
|
|
self._compute_requirements()
|
|
self._compute_alpha_radii()
|
|
|
|
self._alpha_assign(0, self.length_polyline-1)
|
|
|
|
def __repr__(self):
|
|
return str(self.alpha_radii)
|
|
|
|
def get_radii(self):
|
|
for i in range(1, self.length_polyline-1):
|
|
self.radii[i] = round(self.alpha_radii[i] * self.tangente[i])
|
|
return self.radii
|
|
|
|
def get_centers(self):
|
|
for i in range(1, self.length_polyline-1):
|
|
bisector = (self.unit_vectors[i] - self.unit_vectors[i-1]) / (
|
|
np.linalg.norm(self.unit_vectors[i] + self.unit_vectors[i-1]))
|
|
|
|
array = self.points[i] + sqrt(self.radii[i]
|
|
** 2 + self.alpha_radii[i] ** 2) * bisector
|
|
self.centers[i] = Point2D(array[0], array[1]).round()
|
|
return self.centers
|
|
|
|
def _alpha_assign(self, start_index: int, end_index: int):
|
|
"""
|
|
The alpha-assign procedure assigning radii based on a polyline.
|
|
"""
|
|
minimum_radius, minimum_index = inf, end_index
|
|
|
|
if start_index + 1 >= end_index:
|
|
return
|
|
|
|
alpha_b = min(
|
|
self.lengths[start_index] - self.alpha_radii[start_index], self.lengths[start_index + 1])
|
|
current_radius = max(self.tangente[start_index] * self.alpha_radii[start_index],
|
|
self.tangente[start_index + 1] * alpha_b) # Radius at initial segment
|
|
|
|
if current_radius < minimum_radius:
|
|
minimum_radius, minimum_index = current_radius, start_index
|
|
# 0, 8
|
|
alpha_low, alpha_high = self.alpha_radii[start_index], alpha_b
|
|
|
|
for i in range(start_index + 1, end_index - 1): # Radii for internal segments
|
|
alpha_a, alpha_b, current_radius = self._radius_balance(i)
|
|
if current_radius < minimum_radius:
|
|
minimum_radius, minimum_index = current_radius, i
|
|
alpha_low, alpha_high = alpha_a, alpha_b
|
|
|
|
alpha_a = min(self.lengths[end_index-2],
|
|
self.lengths[end_index-1]-self.alpha_radii[end_index])
|
|
|
|
current_radius = max(self.tangente[end_index-1]*alpha_a, self.tangente[end_index]
|
|
* self.alpha_radii[end_index]) # Radius at final segment
|
|
|
|
if current_radius < minimum_radius:
|
|
minimum_radius, minimum_index = current_radius, end_index - 1
|
|
alpha_low, alpha_high = alpha_a, self.alpha_radii[end_index]
|
|
|
|
# Assign alphas at ends of selected segment
|
|
self.alpha_radii[minimum_index] = alpha_low
|
|
self.alpha_radii[minimum_index+1] = alpha_high
|
|
|
|
# Recur on lower segments
|
|
self._alpha_assign(start_index, minimum_index)
|
|
# Recur on higher segments
|
|
self._alpha_assign(minimum_index + 1, end_index)
|
|
|
|
def _radius_balance(self, i: int):
|
|
"""
|
|
Returns the radius that balances the radii on either end segement i.
|
|
"""
|
|
alpha_a = min(self.lengths[i-1], (self.lengths[i]*self.tangente[i+1]) /
|
|
(self.tangente[i] + self.tangente[i+1]))
|
|
alpha_b = min(self.lengths[i+1], self.lengths[i]-alpha_a)
|
|
return alpha_a, alpha_b, min(self.tangente[i]*alpha_a, self.tangente[i+1]*alpha_b)
|
|
|
|
def _compute_requirements(self):
|
|
# Between two points, there is only one segment
|
|
for j in range(self.length_polyline-1):
|
|
self.vectors[j] = self.points[j+1] - self.points[j]
|
|
self.lengths[j] = np.linalg.norm(self.vectors[j])
|
|
self.unit_vectors[j] = self.vectors[j]/self.lengths[j]
|
|
|
|
# Between two segments, there is only one angle
|
|
for k in range(1, self.length_polyline-1):
|
|
dot = np.dot(self.unit_vectors[k], -self.unit_vectors[k-1])
|
|
self.tangente[k] = sqrt((1+dot)/(1-dot))
|
|
|
|
def _compute_alpha_radii(self):
|
|
self.alpha_radii[0] = 0
|
|
self.alpha_radii[self.length_polyline-1] = 0
|