from networks.geometry.Point2D import Point2D from math import sqrt, inf import numpy as np class Polyline: def __init__(self, points: list["Point2D"]): """A polyline with smooth corners, only composed of segments and circle arc. Mathematics and algorithms behind this can be found here: https://cdr.lib.unc.edu/concern/dissertations/pz50gw814?locale=en, E2 Construction of arc roads from polylines, page 210. Args: points (List[Point2D]): List of 2d-points in order describing the polyline. Raises: ValueError: At least 4 points required. >>> Polyline((Point2D(0, 0), Point2D(0, 10), Point2D(50, 10), Point2D(20, 20))) """ self.coordinates = points self.points = Point2D.to_vectors(points) self.length_polyline = len(points) if self.length_polyline < 4: raise ValueError("The list must contain at least 4 elements.") self.vectors = [None] * self.length_polyline # v self.lengths = [None] * self.length_polyline # l self.unit_vectors = [None] * self.length_polyline # n self.tangente = [0] * self.length_polyline # f self.alpha_radii = [None] * self.length_polyline # alpha self.radii = [None] * self.length_polyline # r self.centers = [None] * self.length_polyline # c self._compute_requirements() self._compute_alpha_radii() self._alpha_assign(0, self.length_polyline-1) def __repr__(self): return str(self.alpha_radii) def get_radii(self): for i in range(1, self.length_polyline-1): self.radii[i] = round(self.alpha_radii[i] * self.tangente[i]) return self.radii def get_centers(self): for i in range(1, self.length_polyline-1): bisector = (self.unit_vectors[i] - self.unit_vectors[i-1]) / ( np.linalg.norm(self.unit_vectors[i] + self.unit_vectors[i-1])) array = self.points[i] + sqrt(self.radii[i] ** 2 + self.alpha_radii[i] ** 2) * bisector self.centers[i] = Point2D(array[0], array[1]).round() return self.centers def _alpha_assign(self, start_index: int, end_index: int): """ The alpha-assign procedure assigning radii based on a polyline. """ minimum_radius, minimum_index = inf, end_index if start_index + 1 >= end_index: return alpha_b = min( self.lengths[start_index] - self.alpha_radii[start_index], self.lengths[start_index + 1]) current_radius = max(self.tangente[start_index] * self.alpha_radii[start_index], self.tangente[start_index + 1] * alpha_b) # Radius at initial segment if current_radius < minimum_radius: minimum_radius, minimum_index = current_radius, start_index # 0, 8 alpha_low, alpha_high = self.alpha_radii[start_index], alpha_b for i in range(start_index + 1, end_index - 1): # Radii for internal segments alpha_a, alpha_b, current_radius = self._radius_balance(i) if current_radius < minimum_radius: minimum_radius, minimum_index = current_radius, i alpha_low, alpha_high = alpha_a, alpha_b alpha_a = min(self.lengths[end_index-2], self.lengths[end_index-1]-self.alpha_radii[end_index]) current_radius = max(self.tangente[end_index-1]*alpha_a, self.tangente[end_index] * self.alpha_radii[end_index]) # Radius at final segment if current_radius < minimum_radius: minimum_radius, minimum_index = current_radius, end_index - 1 alpha_low, alpha_high = alpha_a, self.alpha_radii[end_index] # Assign alphas at ends of selected segment self.alpha_radii[minimum_index] = alpha_low self.alpha_radii[minimum_index+1] = alpha_high # Recur on lower segments self._alpha_assign(start_index, minimum_index) # Recur on higher segments self._alpha_assign(minimum_index + 1, end_index) def _radius_balance(self, i: int): """ Returns the radius that balances the radii on either end segement i. """ alpha_a = min(self.lengths[i-1], (self.lengths[i]*self.tangente[i+1]) / (self.tangente[i] + self.tangente[i+1])) alpha_b = min(self.lengths[i+1], self.lengths[i]-alpha_a) return alpha_a, alpha_b, min(self.tangente[i]*alpha_a, self.tangente[i+1]*alpha_b) def _compute_requirements(self): # Between two points, there is only one segment for j in range(self.length_polyline-1): self.vectors[j] = self.points[j+1] - self.points[j] self.lengths[j] = np.linalg.norm(self.vectors[j]) self.unit_vectors[j] = self.vectors[j]/self.lengths[j] # Between two segments, there is only one angle for k in range(1, self.length_polyline-1): dot = np.dot(self.unit_vectors[k], -self.unit_vectors[k-1]) self.tangente[k] = sqrt((1+dot)/(1-dot)) def _compute_alpha_radii(self): self.alpha_radii[0] = 0 self.alpha_radii[self.length_polyline-1] = 0