Files
GDMC-2024/networks/polylines.py
2024-06-10 18:54:28 +02:00

114 lines
3.8 KiB
Python

from math import sqrt, inf
import numpy as np
class Point2D:
def __init__(self, x, y):
self.x = x
self.y = y
def __repr__(self):
return f"({self.x} {self.y})"
def copy(self):
return Point2D(self.x, self.y)
def get_coordinates(self):
return (self.x, self.y)
def coordinates_to_vectors(coordinates):
vectors = []
for coordinate in coordinates:
vectors.append(np.array(coordinate.get_coordinates()))
if (len(vectors) == 1):
return vectors[0]
else:
return vectors
class Polyline:
def __init__(self, points):
self.points = coordinates_to_vectors(points)
self.length_polyline = len(points)
self.vectors = [None] * self.length_polyline
self.lengths = [None] * self.length_polyline
self.unit_vectors = [None] * self.length_polyline
self.tangente = [None] * self.length_polyline
self.compute_requirements()
def compute_requirements(self):
# Between two points, there is only one segment
for j in range(self.length_polyline-1):
self.vectors[j] = self.points[j+1] - self.points[j]
self.lengths[j] = np.linalg.norm(self.vectors[j])
self.unit_vectors[j] = self.vectors[j]/self.lengths[j]
# print("\n\n", vectors, "\n\n", lengths, "\n\n", unit_vectors, "\n\n")
# Between two segments, there is only one angle
for k in range(self.length_polyline-2):
cross = np.dot(self.unit_vectors[k+1], self.unit_vectors[k])
self.tangente[k] = sqrt((1+cross)/(1-cross))
def radius_balance(self, i):
"""
Returns the radius that balances the radii on either end segement i.
"""
alpha_a = min(self.lengths[i], (self.lengths[i+1]*self.tangente[i+1]) /
(self.tangente[i] + self.tangente[i+1]))
alpha_b = min(self.lengths[i+2], self.lengths[i+1]-alpha_a)
return alpha_a, alpha_b, max(self.tangente[i]*alpha_a, self.tangente[i+1]*alpha_b)
def alpha_assign(polyline, alpha_radii, start_index, end_index):
"""
The Alpha-assign procedure assigning radii based on a polyline.
"""
minimum_radius, minimum_index = inf, end_index
if start_index + 1 >= end_index:
return
alpha_b = min(lenghts[start_index] -
alpha_radii[start_index], lenghts[start_index + 1])
current_radius = max(tangente[start_index] * alpha_radii[start_index],
tangente[start_index + 1] * alpha_b) # Radis at initial segment
if current_radius < minimum_radius:
minimum_radius, minimum_index = current_radius, start_index
alpha_low, alpha_high = alpha_radii[start_index], alpha_b
for i in range(start_index + 1, end_index - 2): # Radii for internal segments
alpha_a, alpha_b, current_radius = radius_balance(polyline, i)
if current_radius < minimum_radius:
alpha_low, alpha_high = alpha_a, alpha_radii[end_index]
# Assign alphas at ends of selected segment
alpha_radii[minimum_index] = alpha_low
alpha_radii[minimum_index+1] = alpha_high
# Recur on lower segments
alpha_assign(alpha_radii, start_index, minimum_index)
alpha_assign(alpha_radii, minimum_index + 1,
end_index) # Recur on higher segments
def compute_alpha_radii(polyline):
length_array = len(polyline)
apha_radii = [None] * length_array
alpha_radii[0] = 0
alpha_radii[length_array-1] = 0
for i in range(1, length_array-2):
alpha_radii[i] = min()
polyline = Polyline((Point2D(0, 0), Point2D(
0, 10), Point2D(10, 10), Point2D(10, 20)))
print(polyline.radius_balance(0))