Files
GDMC-2024/networks/geometry/Segment2D.py
2024-06-20 22:16:39 +02:00

284 lines
10 KiB
Python

from typing import List, Union
import numpy as np
from utils.Enums import LINE_OVERLAP, LINE_THICKNESS_MODE
from networks.geometry.Point2D import Point2D
class Segment2D:
def __init__(self, start: Point2D, end: Point2D):
self.start = start
self.end = end
self.points: List[Point2D] = []
self.points_thick: List[Point2D] = []
self.points_thick_by_line: List[List[Point2D]] = []
self.gaps: List[List[Point2D]] = []
self.thickness = None
def __repr__(self):
return str(f"Segment2D(start: {self.start}, end: {self.end}, points: {self.points})")
def segment(self, start: Point2D = None, end: Point2D = None, overlap: LINE_OVERLAP = LINE_OVERLAP.NONE, _is_computing_thickness: int = 0) -> Union[List[Point2D], None]:
"""Modified Bresenham draw (line) with optional overlap.
From: https://github.com/ArminJo/Arduino-BlueDisplay/blob/master/src/LocalGUI/ThickLine.hpp
Args:
start (Point2D): Start point of the segment.
end (Point2D): End point of the segment.
overlap (LINE_OVERLAP): Overlap draws additional pixel when changing minor direction. For standard bresenham overlap, choose LINE_OVERLAP_NONE. Can also be LINE_OVERLAP_MAJOR or LINE_OVERLAP_MINOR.
_is_computing_thickness (bool, optionnal): Used by segment_thick. Don't touch.
>>> Segment2D(Point2D(0, 0), Point2D(10, 15))
"""
if start is None or end is None:
start = self.start.copy()
end = self.end.copy()
else:
start = start.copy()
end = end.copy()
# Direction
delta_x = end.x - start.x
delta_y = end.y - start.y
if (delta_x < 0):
delta_x = -delta_x
step_x = -1
else:
step_x = +1
if (delta_y < 0):
delta_y = -delta_y
step_y = -1
else:
step_y = +1
delta_2x = 2*delta_x
delta_2y = 2*delta_y
self._add_points(start, _is_computing_thickness, LINE_OVERLAP.NONE)
if (delta_x > delta_y):
error = delta_2y - delta_x
while (start.x != end.x):
start.x += step_x
if (error >= 0):
if (overlap == LINE_OVERLAP.MAJOR):
self._add_points(
start, _is_computing_thickness, overlap)
start.y += step_y
if (overlap == LINE_OVERLAP.MINOR):
self._add_points(
Point2D(start.copy().x - step_x, start.copy().y), _is_computing_thickness, overlap)
error -= delta_2x
error += delta_2y
self._add_points(
start, _is_computing_thickness, LINE_OVERLAP.NONE)
else:
error = delta_2x - delta_y
while (start.y != end.y):
start.y += step_y
if (error >= 0):
if (overlap == LINE_OVERLAP.MAJOR):
self._add_points(
start, _is_computing_thickness, overlap)
start.x += step_x
if (overlap == LINE_OVERLAP.MINOR):
self._add_points(
Point2D(start.copy().x, start.copy().y - step_y), _is_computing_thickness, overlap)
error -= delta_2y
error += delta_2x
self._add_points(
start, _is_computing_thickness, LINE_OVERLAP.NONE)
if not _is_computing_thickness:
return self.points
return None
def segment_thick(self, thickness: int, thickness_mode: LINE_THICKNESS_MODE) -> List[Point2D]:
"""Bresenham with thickness.
From: https://github.com/ArminJo/Arduino-BlueDisplay/blob/master/src/LocalGUI/ThickLine.hpp
Murphy's Modified Bresenham algorithm : http://zoo.co.uk/murphy/thickline/index.html
Args:
start (Point2D): Start point of the segment.
end (Point2D): End point of the segment.
thickness (int): Total width of the surface. Placement relative to the original segment depends on thickness_mode.
thickness_mode (LINE_THICKNESS_MODE): Can be one of LINE_THICKNESS_MIDDLE, LINE_THICKNESS_DRAW_CLOCKWISE, LINE_THICKNESS_DRAW_COUNTERCLOCKWISE.
>>> self.compute_thick_segment(self.start, self.end, self.thickness, self.thickness_mode)
"""
self.points_thick_by_line = [[] for _ in range(thickness)]
self.gaps = [[] for _ in range(thickness)]
start = self.start.copy()
end = self.end.copy()
delta_y = end.x - start.x
delta_x = end.y - start.y
swap = True
if (delta_x < 0):
delta_x = -delta_x
step_x = -1
swap = not swap
else:
step_x = +1
if (delta_y < 0):
delta_y = -delta_y
step_y = -1
swap = not swap
else:
step_y = +1
delta_2x = 2 * delta_x
delta_2y = 2 * delta_y
draw_start_adjust_count = int(thickness / 2)
if (thickness_mode == LINE_THICKNESS_MODE.DRAW_COUNTERCLOCKWISE):
draw_start_adjust_count = thickness - 1
elif (thickness_mode == LINE_THICKNESS_MODE.DRAW_CLOCKWISE):
draw_start_adjust_count = 0
if (delta_x >= delta_y):
if swap:
draw_start_adjust_count = (
thickness - 1) - draw_start_adjust_count
step_y = -step_y
else:
step_x = -step_x
error = delta_2y - delta_x
for i in range(draw_start_adjust_count, 0, -1):
start.x -= step_x
end.x -= step_x
if error >= 0:
start.y -= step_y
end.y -= step_y
error -= delta_2x
error += delta_2x
if not swap:
self.segment(
start, end, overlap=LINE_OVERLAP.NONE, _is_computing_thickness=0)
else:
self.segment(
start, end, overlap=LINE_OVERLAP.NONE, _is_computing_thickness=thickness-1)
error = delta_2x - delta_x
for i in range(thickness, 1, -1):
start.x += step_x
end.x += step_x
overlap = LINE_OVERLAP.NONE
if (error >= 0):
start.y += step_y
end.y += step_y
error -= delta_2x
overlap = LINE_OVERLAP.MAJOR
error += delta_2y
if not swap:
self.segment(
start, end, overlap=overlap, _is_computing_thickness=(thickness-i+1))
else:
self.segment(
start, end, overlap=overlap, _is_computing_thickness=(i-2))
else:
if swap:
step_x = -step_x
else:
draw_start_adjust_count = (
thickness - 1) - draw_start_adjust_count
step_y = -step_y
error = delta_2x - delta_y
for i in range(draw_start_adjust_count, 0, -1):
start.y -= step_y
end.y -= step_y
if (error >= 0):
start.x -= step_x
end.x -= step_x
error -= delta_2y
error += delta_2x
if swap:
self.segment(
start, end, overlap=LINE_OVERLAP.NONE, _is_computing_thickness=0)
else:
self.segment(
start, end, overlap=LINE_OVERLAP.NONE, _is_computing_thickness=thickness-1)
error = delta_2x - delta_y
for i in range(thickness, 1, -1):
start.y += step_y
end.y += step_y
overlap = LINE_OVERLAP.NONE
if (error >= 0):
start.x += step_x
end.x += step_x
error -= delta_2y
overlap = LINE_OVERLAP.MAJOR
error += delta_2x
if swap:
self.segment(
start, end, overlap=overlap, _is_computing_thickness=(thickness-i+1))
else:
self.segment(
start, end, overlap=overlap, _is_computing_thickness=(i-2))
reel_distance = self.points_thick_by_line[0][0].distance(
self.points_thick_by_line[-1][0])
return self.points_thick
def perpendicular(self, distance: int) -> List[Point2D]:
"""Compute perpendicular points from both side of the segment placed at start level.
Args:
distance (int): Distance bewteen the start point and the perpendicular.
Returns:
List[Point2D]: Two points. First one positioned on the counterclockwise side of the segment, oriented from start to end (meaning left).
>>> Segment2D(Point2D(0, 0), Point2D(10, 10)).perpendicular(10)
(Point2D(x: -4, y: 4), Point2D(x: 4, y: -4))
"""
delta = self.start.distance(self.end)
dx = (self.start.x - self.end.x) / delta
dy = (self.start.y - self.end.y) / delta
x3 = self.start.x + (distance / 2) * dy
y3 = self.start.y - (distance / 2) * dx
x4 = self.start.x - (distance / 2) * dy
y4 = self.start.y + (distance / 2) * dx
return Point2D(x3, y3).round(), Point2D(x4, y4).round()
def middle_point(self):
return (np.round((self.start.x + self.end.x) / 2.0).astype(int),
np.round((self.start.y + self.end.y) / 2.0).astype(int),
)
def _add_points(self, points, is_computing_thickness, overlap):
if is_computing_thickness >= 0:
self.points_thick.append(points.copy())
if overlap == LINE_OVERLAP.NONE:
self.points_thick_by_line[is_computing_thickness].append(
(points.copy()))
else:
self.gaps[is_computing_thickness].append(
(points.copy()))
else:
self.points.append(points.copy())