Working radii
This commit is contained in:
16
main.py
16
main.py
@@ -266,7 +266,17 @@ block_list = ["blue_concrete", "red_concrete", "green_concrete",
|
||||
# # polyline._alpha_assign(1, polyline.length_polyline-1)
|
||||
# print(polyline.alpha_radii)
|
||||
|
||||
print(Polyline((Point2D(0, 0), Point2D(0, 10), Point2D(50, 10), Point2D(20, 20))))
|
||||
p = Polyline((Point2D(0, 0), Point2D(8, 0), Point2D(
|
||||
8, 8), Point2D(16, 16)))
|
||||
|
||||
s = Segment2D(Point2D(0, 0), Point2D(10, 10)).perpendicular(10)
|
||||
print(s)
|
||||
# print(p.alpha_radii)
|
||||
|
||||
print(p.get_radius())
|
||||
|
||||
# s = Segment2D(Point2D(0, 0), Point2D(10, 10)).perpendicular(10)
|
||||
# print(s)
|
||||
|
||||
# Note: passer parrallel dans Segment2D pour pouvoir calculer l'intersection entre deux segments
|
||||
# de la Polyline pour trouver le centre du cercle. Faire l'arc de cercle en utilise is_in_triangle
|
||||
# Okay mb, l'article scientifique explique une procédure sans doute plus efficace.
|
||||
# alpha n'est pas un angle.
|
||||
|
||||
@@ -31,6 +31,9 @@ class Polyline:
|
||||
|
||||
self.alpha_radii = [None] * self.length_polyline
|
||||
|
||||
self.radii = [None] * self.length_polyline
|
||||
self.centers = [None] * self.length_polyline
|
||||
|
||||
self._compute_requirements()
|
||||
self._compute_alpha_radii()
|
||||
|
||||
@@ -39,6 +42,21 @@ class Polyline:
|
||||
def __repr__(self):
|
||||
return str(self.alpha_radii)
|
||||
|
||||
def get_radius(self):
|
||||
for i in range(1, self.length_polyline-1):
|
||||
self.radii[i] = self.alpha_radii[i] * self.tangente[i]
|
||||
return self.radii
|
||||
|
||||
def get_centers(self):
|
||||
print(self.radii)
|
||||
for i in range(1, self.length_polyline-2):
|
||||
print(i)
|
||||
bi = (self.unit_vectors[i] + self.unit_vectors[i-1]) / \
|
||||
np.linalg.norm(self.unit_vectors[i] - self.unit_vectors[i-1])
|
||||
self.centers[i] = self.points[i] + \
|
||||
sqrt(self.radii[i] ** 2 + self.alpha_radii[i] ** 2) * bi
|
||||
return self.centers
|
||||
|
||||
def _alpha_assign(self, start_index: int, end_index: int):
|
||||
"""
|
||||
The alpha-assign procedure assigning radii based on a polyline.
|
||||
@@ -54,12 +72,25 @@ class Polyline:
|
||||
self.tangente[start_index + 1] * alpha_b) # Radis at initial segment
|
||||
|
||||
if current_radius < minimum_radius:
|
||||
minimum_radius, minimum_index = current_radius, start_index
|
||||
minimum_radius, minimum_index = current_radius, start_index # 8, 0
|
||||
# 0, 8
|
||||
alpha_low, alpha_high = self.alpha_radii[start_index], alpha_b
|
||||
|
||||
for i in range(start_index + 1, end_index - 2): # Radii for internal segments
|
||||
alpha_a, alpha_b, current_radius = self._radius_balance(i)
|
||||
for i in range(start_index + 1, end_index - 1): # Radii for internal segments
|
||||
alpha_a, alpha_b, current_radius = self._radius_balance(
|
||||
i) # i = 1 # 4, 4, 4,
|
||||
if current_radius < minimum_radius: # 4 < 8
|
||||
minimum_radius, minimum_index = current_radius, i # 4, 1
|
||||
alpha_low, alpha_high = alpha_a, alpha_b # 4, 4
|
||||
|
||||
alpha_a = min(self.lengths[end_index-2],
|
||||
self.lengths[end_index-1]-self.alpha_radii[end_index]) # 8
|
||||
|
||||
current_radius = max(self.tangente[end_index-1]*alpha_a, self.tangente[end_index]
|
||||
* self.alpha_radii[end_index]) # Radius at final segment
|
||||
|
||||
if current_radius < minimum_radius:
|
||||
minimum_radius, minimum_index = current_radius, end_index - 1
|
||||
alpha_low, alpha_high = alpha_a, self.alpha_radii[end_index]
|
||||
|
||||
# Assign alphas at ends of selected segment
|
||||
@@ -79,7 +110,8 @@ class Polyline:
|
||||
alpha_a = min(self.lengths[i-1], (self.lengths[i]*self.tangente[i+1]) /
|
||||
(self.tangente[i] + self.tangente[i+1]))
|
||||
alpha_b = min(self.lengths[i+1], self.lengths[i]-alpha_a)
|
||||
|
||||
print(alpha_a, alpha_b, max(
|
||||
self.tangente[i]*alpha_a, self.tangente[i+1]*alpha_b))
|
||||
return alpha_a, alpha_b, max(self.tangente[i]*alpha_a, self.tangente[i+1]*alpha_b)
|
||||
|
||||
def _compute_requirements(self):
|
||||
@@ -89,17 +121,15 @@ class Polyline:
|
||||
self.lengths[j] = np.linalg.norm(self.vectors[j])
|
||||
self.unit_vectors[j] = self.vectors[j]/self.lengths[j]
|
||||
|
||||
# print("\n\n", vectors, "\n\n", lengths, "\n\n", unit_vectors, "\n\n")
|
||||
|
||||
# Between two segments, there is only one angle
|
||||
for k in range(1, self.length_polyline-1):
|
||||
cross = np.dot(self.unit_vectors[k], self.unit_vectors[k-1])
|
||||
self.tangente[k] = sqrt((1+cross)/(1-cross))
|
||||
dot = np.dot(self.unit_vectors[k], self.unit_vectors[k-1])
|
||||
self.tangente[k] = sqrt((1+dot)/(1-dot))
|
||||
|
||||
def _compute_alpha_radii(self):
|
||||
self.alpha_radii[0] = 0
|
||||
self.alpha_radii[self.length_polyline-1] = 0
|
||||
|
||||
for i in range(1, self.length_polyline-2):
|
||||
self.alpha_radii[i] = min(self.lengths[i-1] - self.alpha_radii[i-1], (self.lengths[i]
|
||||
* self.tangente[i+1])/(self.tangente[i]+self.tangente[i+1]))
|
||||
# for i in range(1, self.length_polyline-2):
|
||||
# self.alpha_radii[i] = min(self.lengths[i-1] - self.alpha_radii[i-1], (self.lengths[i]
|
||||
# * self.tangente[i+1])/(self.tangente[i]+self.tangente[i+1]))
|
||||
|
||||
Reference in New Issue
Block a user