From 7ad9b45f6cf546b8f230b99f4f7c6265fa15fa01 Mon Sep 17 00:00:00 2001 From: Xeon0X Date: Wed, 12 Jun 2024 16:14:09 +0200 Subject: [PATCH] Working radii --- main.py | 16 ++++++++-- networks/geometry/Polyline.py | 56 +++++++++++++++++++++++++++-------- 2 files changed, 56 insertions(+), 16 deletions(-) diff --git a/main.py b/main.py index 1eefd64..123274e 100644 --- a/main.py +++ b/main.py @@ -266,7 +266,17 @@ block_list = ["blue_concrete", "red_concrete", "green_concrete", # # polyline._alpha_assign(1, polyline.length_polyline-1) # print(polyline.alpha_radii) -print(Polyline((Point2D(0, 0), Point2D(0, 10), Point2D(50, 10), Point2D(20, 20)))) +p = Polyline((Point2D(0, 0), Point2D(8, 0), Point2D( + 8, 8), Point2D(16, 16))) -s = Segment2D(Point2D(0, 0), Point2D(10, 10)).perpendicular(10) -print(s) +# print(p.alpha_radii) + +print(p.get_radius()) + +# s = Segment2D(Point2D(0, 0), Point2D(10, 10)).perpendicular(10) +# print(s) + +# Note: passer parrallel dans Segment2D pour pouvoir calculer l'intersection entre deux segments +# de la Polyline pour trouver le centre du cercle. Faire l'arc de cercle en utilise is_in_triangle +# Okay mb, l'article scientifique explique une procédure sans doute plus efficace. +# alpha n'est pas un angle. diff --git a/networks/geometry/Polyline.py b/networks/geometry/Polyline.py index 393b154..2b6d6fd 100644 --- a/networks/geometry/Polyline.py +++ b/networks/geometry/Polyline.py @@ -31,6 +31,9 @@ class Polyline: self.alpha_radii = [None] * self.length_polyline + self.radii = [None] * self.length_polyline + self.centers = [None] * self.length_polyline + self._compute_requirements() self._compute_alpha_radii() @@ -39,6 +42,21 @@ class Polyline: def __repr__(self): return str(self.alpha_radii) + def get_radius(self): + for i in range(1, self.length_polyline-1): + self.radii[i] = self.alpha_radii[i] * self.tangente[i] + return self.radii + + def get_centers(self): + print(self.radii) + for i in range(1, self.length_polyline-2): + print(i) + bi = (self.unit_vectors[i] + self.unit_vectors[i-1]) / \ + np.linalg.norm(self.unit_vectors[i] - self.unit_vectors[i-1]) + self.centers[i] = self.points[i] + \ + sqrt(self.radii[i] ** 2 + self.alpha_radii[i] ** 2) * bi + return self.centers + def _alpha_assign(self, start_index: int, end_index: int): """ The alpha-assign procedure assigning radii based on a polyline. @@ -54,13 +72,26 @@ class Polyline: self.tangente[start_index + 1] * alpha_b) # Radis at initial segment if current_radius < minimum_radius: - minimum_radius, minimum_index = current_radius, start_index + minimum_radius, minimum_index = current_radius, start_index # 8, 0 + # 0, 8 alpha_low, alpha_high = self.alpha_radii[start_index], alpha_b - for i in range(start_index + 1, end_index - 2): # Radii for internal segments - alpha_a, alpha_b, current_radius = self._radius_balance(i) - if current_radius < minimum_radius: - alpha_low, alpha_high = alpha_a, self.alpha_radii[end_index] + for i in range(start_index + 1, end_index - 1): # Radii for internal segments + alpha_a, alpha_b, current_radius = self._radius_balance( + i) # i = 1 # 4, 4, 4, + if current_radius < minimum_radius: # 4 < 8 + minimum_radius, minimum_index = current_radius, i # 4, 1 + alpha_low, alpha_high = alpha_a, alpha_b # 4, 4 + + alpha_a = min(self.lengths[end_index-2], + self.lengths[end_index-1]-self.alpha_radii[end_index]) # 8 + + current_radius = max(self.tangente[end_index-1]*alpha_a, self.tangente[end_index] + * self.alpha_radii[end_index]) # Radius at final segment + + if current_radius < minimum_radius: + minimum_radius, minimum_index = current_radius, end_index - 1 + alpha_low, alpha_high = alpha_a, self.alpha_radii[end_index] # Assign alphas at ends of selected segment self.alpha_radii[minimum_index] = alpha_low @@ -79,7 +110,8 @@ class Polyline: alpha_a = min(self.lengths[i-1], (self.lengths[i]*self.tangente[i+1]) / (self.tangente[i] + self.tangente[i+1])) alpha_b = min(self.lengths[i+1], self.lengths[i]-alpha_a) - + print(alpha_a, alpha_b, max( + self.tangente[i]*alpha_a, self.tangente[i+1]*alpha_b)) return alpha_a, alpha_b, max(self.tangente[i]*alpha_a, self.tangente[i+1]*alpha_b) def _compute_requirements(self): @@ -89,17 +121,15 @@ class Polyline: self.lengths[j] = np.linalg.norm(self.vectors[j]) self.unit_vectors[j] = self.vectors[j]/self.lengths[j] - # print("\n\n", vectors, "\n\n", lengths, "\n\n", unit_vectors, "\n\n") - # Between two segments, there is only one angle for k in range(1, self.length_polyline-1): - cross = np.dot(self.unit_vectors[k], self.unit_vectors[k-1]) - self.tangente[k] = sqrt((1+cross)/(1-cross)) + dot = np.dot(self.unit_vectors[k], self.unit_vectors[k-1]) + self.tangente[k] = sqrt((1+dot)/(1-dot)) def _compute_alpha_radii(self): self.alpha_radii[0] = 0 self.alpha_radii[self.length_polyline-1] = 0 - for i in range(1, self.length_polyline-2): - self.alpha_radii[i] = min(self.lengths[i-1] - self.alpha_radii[i-1], (self.lengths[i] - * self.tangente[i+1])/(self.tangente[i]+self.tangente[i+1])) + # for i in range(1, self.length_polyline-2): + # self.alpha_radii[i] = min(self.lengths[i-1] - self.alpha_radii[i-1], (self.lengths[i] + # * self.tangente[i+1])/(self.tangente[i]+self.tangente[i+1]))