Working alpha_assign
This commit is contained in:
@@ -33,12 +33,15 @@ class Polyline:
|
||||
self.points = coordinates_to_vectors(points)
|
||||
self.length_polyline = len(points)
|
||||
|
||||
self.vectors = [0] * self.length_polyline
|
||||
self.lengths = [0] * self.length_polyline
|
||||
self.unit_vectors = [0] * self.length_polyline
|
||||
self.tangente = [0] * self.length_polyline
|
||||
self.vectors = [None] * self.length_polyline
|
||||
self.lengths = [None] * self.length_polyline
|
||||
self.unit_vectors = [None] * self.length_polyline
|
||||
self.tangente = [None] * self.length_polyline
|
||||
|
||||
self.alpha_radii = [None] * self.length_polyline
|
||||
|
||||
self.compute_requirements()
|
||||
self.compute_alpha_radii()
|
||||
|
||||
def compute_requirements(self):
|
||||
|
||||
@@ -55,6 +58,14 @@ class Polyline:
|
||||
cross = np.dot(self.unit_vectors[k], self.unit_vectors[k-1])
|
||||
self.tangente[k] = sqrt((1+cross)/(1-cross))
|
||||
|
||||
def compute_alpha_radii(self):
|
||||
self.alpha_radii[0] = 0
|
||||
self.alpha_radii[self.length_polyline-1] = 0
|
||||
|
||||
for i in range(1, self.length_polyline-2):
|
||||
self.alpha_radii[i] = min(self.lengths[i-1] - self.alpha_radii[i-1], (self.lengths[i]
|
||||
* self.tangente[i+1])/(self.tangente[i]+self.tangente[i+1]))
|
||||
|
||||
def radius_balance(self, i):
|
||||
"""
|
||||
Returns the radius that balances the radii on either end segement i.
|
||||
@@ -66,7 +77,7 @@ class Polyline:
|
||||
|
||||
return alpha_a, alpha_b, max(self.tangente[i]*alpha_a, self.tangente[i+1]*alpha_b)
|
||||
|
||||
def alpha_assign(polyline, alpha_radii, start_index, end_index):
|
||||
def alpha_assign(self, start_index, end_index):
|
||||
"""
|
||||
The Alpha-assign procedure assigning radii based on a polyline.
|
||||
"""
|
||||
@@ -75,39 +86,35 @@ class Polyline:
|
||||
if start_index + 1 >= end_index:
|
||||
return
|
||||
|
||||
alpha_b = min(lenghts[start_index] -
|
||||
alpha_radii[start_index], lenghts[start_index + 1])
|
||||
current_radius = max(tangente[start_index] * alpha_radii[start_index],
|
||||
tangente[start_index + 1] * alpha_b) # Radis at initial segment
|
||||
alpha_b = min(
|
||||
self.lengths[start_index] - self.alpha_radii[start_index], self.lengths[start_index + 1])
|
||||
current_radius = max(self.tangente[start_index] * self.alpha_radii[start_index],
|
||||
self.tangente[start_index + 1] * alpha_b) # Radis at initial segment
|
||||
|
||||
if current_radius < minimum_radius:
|
||||
minimum_radius, minimum_index = current_radius, start_index
|
||||
alpha_low, alpha_high = alpha_radii[start_index], alpha_b
|
||||
alpha_low, alpha_high = self.alpha_radii[start_index], alpha_b
|
||||
|
||||
for i in range(start_index + 1, end_index - 2): # Radii for internal segments
|
||||
alpha_a, alpha_b, current_radius = radius_balance(polyline, i)
|
||||
alpha_a, alpha_b, current_radius = self.radius_balance(i)
|
||||
if current_radius < minimum_radius:
|
||||
alpha_low, alpha_high = alpha_a, alpha_radii[end_index]
|
||||
alpha_low, alpha_high = alpha_a, self.alpha_radii[end_index]
|
||||
|
||||
# Assign alphas at ends of selected segment
|
||||
alpha_radii[minimum_index] = alpha_low
|
||||
alpha_radii[minimum_index+1] = alpha_high
|
||||
self.alpha_radii[minimum_index] = alpha_low
|
||||
self.alpha_radii[minimum_index+1] = alpha_high
|
||||
print(alpha_low, alpha_high)
|
||||
|
||||
# Recur on lower segments
|
||||
alpha_assign(alpha_radii, start_index, minimum_index)
|
||||
alpha_assign(alpha_radii, minimum_index + 1,
|
||||
end_index) # Recur on higher segments
|
||||
|
||||
def compute_alpha_radii(polyline):
|
||||
length_array = len(polyline)
|
||||
apha_radii = [None] * length_array
|
||||
|
||||
alpha_radii[0] = 0
|
||||
alpha_radii[length_array-1] = 0
|
||||
|
||||
for i in range(1, length_array-2):
|
||||
alpha_radii[i] = min()
|
||||
self.alpha_assign(start_index, minimum_index)
|
||||
# Recur on higher segments
|
||||
self.alpha_assign(minimum_index + 1, end_index)
|
||||
|
||||
|
||||
polyline = Polyline((Point2D(0, 0), Point2D(
|
||||
0, 10), Point2D(10, 10), Point2D(10, 20)))
|
||||
print(polyline.radius_balance(1))
|
||||
polyline = Polyline((Point2D(0, 0), Point2D(0, 10), Point2D(
|
||||
10, 10), Point2D(10, 20), Point2D(20, 20), Point2D(20, 30), Point2D(60, 60), Point2D(60, 0)))
|
||||
|
||||
# print(polyline.radius_balance(2))
|
||||
|
||||
polyline.alpha_assign(1, polyline.length_polyline-1)
|
||||
print(polyline.alpha_radii)
|
||||
|
||||
Reference in New Issue
Block a user