This repository has been archived on 2025-02-26. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
Pivot/src/Solver.cpp
Persson-dev a135df2e96
All checks were successful
Linux arm64 / Build (push) Successful in 2m33s
trop de trucs
2024-05-14 13:00:59 +02:00

71 lines
2.1 KiB
C++

#include "Solver.h"
#include "Gauss.h"
static int FirstNotNullElementIndexOnLine(const Matrix& mat, std::size_t line) {
for (std::size_t i = 0; i < mat.GetColumnCount(); i++) {
if (!IsEqualZero(mat.at(line, i))) {
return i;
}
}
return -1;
}
Vect Solver::Image(Matrix&& a_Matrix) const {
a_Matrix.Transpose();
Gauss::GaussJordan(a_Matrix, false, false);
a_Matrix.Transpose();
return {std::move(a_Matrix)};
}
// https://en.wikipedia.org/wiki/Kernel_(linear_algebra)#Computation_by_Gaussian_elimination
Vect Solver::Kernel(Matrix&& a_Matrix) const {
std::size_t matrixRawCount = a_Matrix.GetRawCount();
std::size_t matrixColumnCount = a_Matrix.GetColumnCount();
a_Matrix.Transpose();
a_Matrix.Augment(Matrix::Identity(a_Matrix.GetRawCount()));
Gauss::GaussJordan(a_Matrix, false, true);
a_Matrix.Transpose();
// nombre de colonnes non nulles
std::size_t origine_colonne = Vect(a_Matrix.SubMatrix(0, 0, matrixRawCount, matrixColumnCount)).GetCardinal();
return {a_Matrix.SubMatrix(
matrixRawCount, origine_colonne, a_Matrix.GetRawCount() - matrixRawCount, a_Matrix.GetColumnCount() - origine_colonne)};
}
VectAffine Solver::RectangularSystem(Matrix&& a_MatrixA, const Matrix& a_VectorB) const {
Matrix mat = a_MatrixA;
mat.Augment(a_VectorB);
Gauss::GaussJordan(mat, true, true);
Solver solver;
Vect noyau = solver.Kernel(std::move(a_MatrixA));
Matrix origin = mat.SubMatrix(0, mat.GetColumnCount() - 1, mat.GetRawCount(), 1);
// on calcule le vecteur qui dirige l'espace affine
Matrix fullOrigin {mat.GetColumnCount() - 1, 1};
for (std::size_t i = 0; i < mat.GetRawCount(); i++) {
int pivot_index = FirstNotNullElementIndexOnLine(mat, i);
if (static_cast<std::size_t>(pivot_index) == mat.GetColumnCount() - 1) {
// on a une ligne du type 0 = n. Aucune solution !
return {Matrix {}, Matrix::ColumnVector({0})};
}
// ligne entière de 0
if (pivot_index < 0)
continue;
fullOrigin.at(pivot_index, 0) = origin.at(i, 0);
}
return {noyau, fullOrigin};
}
std::size_t Solver::Rank(Matrix&& a_Matrix) const {
return Image(std::move(a_Matrix)).GetCardinal();
}