1 Commits
master ... plot

Author SHA1 Message Date
8c004b64ed caca
All checks were successful
Linux arm64 / Build (push) Successful in 41m33s
2024-05-14 19:00:04 +02:00
13 changed files with 2512 additions and 26 deletions

4
.vscode/launch.json vendored
View File

@@ -7,8 +7,8 @@
{ {
"type": "xmake", "type": "xmake",
"request": "launch", "request": "launch",
"name": "Debug XMake target", "name": "Debug random kernel",
"target": "Pivot", "target": "test_random_kernel",
"cwd": "${workspaceFolder}/matricies", "cwd": "${workspaceFolder}/matricies",
} }
] ]

19
.vscode/settings.json vendored
View File

@@ -44,6 +44,23 @@
"stdexcept": "cpp", "stdexcept": "cpp",
"streambuf": "cpp", "streambuf": "cpp",
"cinttypes": "cpp", "cinttypes": "cpp",
"typeinfo": "cpp" "typeinfo": "cpp",
"codecvt": "cpp",
"condition_variable": "cpp",
"cstring": "cpp",
"ctime": "cpp",
"ratio": "cpp",
"fstream": "cpp",
"future": "cpp",
"iomanip": "cpp",
"mutex": "cpp",
"semaphore": "cpp",
"sstream": "cpp",
"stop_token": "cpp",
"thread": "cpp",
"chrono": "cpp",
"optional": "cpp",
"ranges": "cpp",
"span": "cpp"
} }
} }

16
imgui.ini Normal file
View File

@@ -0,0 +1,16 @@
[Window][Debug##Default]
Pos=60,60
Size=400,400
[Window][Right Top Window]
Pos=640,0
Size=640,576
[Window][Bottom Part]
Pos=0,576
Size=1280,144
[Window][Left Top Window]
Pos=0,0
Size=640,576

View File

@@ -18,7 +18,7 @@
*/ */
class Matrix { class Matrix {
public: public:
typedef NR Element; typedef long double Element;
typedef std::vector<Element>::iterator iterator; typedef std::vector<Element>::iterator iterator;
private: private:

BIN
matricies/core Normal file

Binary file not shown.

2067
matricies/plot.eps Normal file

File diff suppressed because it is too large Load Diff

BIN
matricies/plot.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

135
matricies/plot.tex Normal file
View File

@@ -0,0 +1,135 @@
% GNUPLOT: LaTeX picture with Postscript
\begingroup
\makeatletter
\providecommand\color[2][]{%
\GenericError{(gnuplot) \space\space\space\@spaces}{%
Package color not loaded in conjunction with
terminal option `colourtext'%
}{See the gnuplot documentation for explanation.%
}{Either use 'blacktext' in gnuplot or load the package
color.sty in LaTeX.}%
\renewcommand\color[2][]{}%
}%
\providecommand\includegraphics[2][]{%
\GenericError{(gnuplot) \space\space\space\@spaces}{%
Package graphicx or graphics not loaded%
}{See the gnuplot documentation for explanation.%
}{The gnuplot epslatex terminal needs graphicx.sty or graphics.sty.}%
\renewcommand\includegraphics[2][]{}%
}%
\providecommand\rotatebox[2]{#2}%
\@ifundefined{ifGPcolor}{%
\newif\ifGPcolor
\GPcolortrue
}{}%
\@ifundefined{ifGPblacktext}{%
\newif\ifGPblacktext
\GPblacktexttrue
}{}%
% define a \g@addto@macro without @ in the name:
\let\gplgaddtomacro\g@addto@macro
% define empty templates for all commands taking text:
\gdef\gplbacktext{}%
\gdef\gplfronttext{}%
\makeatother
\ifGPblacktext
% no textcolor at all
\def\colorrgb#1{}%
\def\colorgray#1{}%
\else
% gray or color?
\ifGPcolor
\def\colorrgb#1{\color[rgb]{#1}}%
\def\colorgray#1{\color[gray]{#1}}%
\expandafter\def\csname LTw\endcsname{\color{white}}%
\expandafter\def\csname LTb\endcsname{\color{black}}%
\expandafter\def\csname LTa\endcsname{\color{black}}%
\expandafter\def\csname LT0\endcsname{\color[rgb]{1,0,0}}%
\expandafter\def\csname LT1\endcsname{\color[rgb]{0,1,0}}%
\expandafter\def\csname LT2\endcsname{\color[rgb]{0,0,1}}%
\expandafter\def\csname LT3\endcsname{\color[rgb]{1,0,1}}%
\expandafter\def\csname LT4\endcsname{\color[rgb]{0,1,1}}%
\expandafter\def\csname LT5\endcsname{\color[rgb]{1,1,0}}%
\expandafter\def\csname LT6\endcsname{\color[rgb]{0,0,0}}%
\expandafter\def\csname LT7\endcsname{\color[rgb]{1,0.3,0}}%
\expandafter\def\csname LT8\endcsname{\color[rgb]{0.5,0.5,0.5}}%
\else
% gray
\def\colorrgb#1{\color{black}}%
\def\colorgray#1{\color[gray]{#1}}%
\expandafter\def\csname LTw\endcsname{\color{white}}%
\expandafter\def\csname LTb\endcsname{\color{black}}%
\expandafter\def\csname LTa\endcsname{\color{black}}%
\expandafter\def\csname LT0\endcsname{\color{black}}%
\expandafter\def\csname LT1\endcsname{\color{black}}%
\expandafter\def\csname LT2\endcsname{\color{black}}%
\expandafter\def\csname LT3\endcsname{\color{black}}%
\expandafter\def\csname LT4\endcsname{\color{black}}%
\expandafter\def\csname LT5\endcsname{\color{black}}%
\expandafter\def\csname LT6\endcsname{\color{black}}%
\expandafter\def\csname LT7\endcsname{\color{black}}%
\expandafter\def\csname LT8\endcsname{\color{black}}%
\fi
\fi
\setlength{\unitlength}{0.0500bp}%
\ifx\gptboxheight\undefined%
\newlength{\gptboxheight}%
\newlength{\gptboxwidth}%
\newsavebox{\gptboxtext}%
\fi%
\setlength{\fboxrule}{0.5pt}%
\setlength{\fboxsep}{1pt}%
\definecolor{tbcol}{rgb}{1,1,1}%
\begin{picture}(7200.00,5040.00)%
\gplgaddtomacro\gplbacktext{%
\colorrgb{0.15,0.15,0.15}%%
\put(803,554){\makebox(0,0)[r]{\strut{}0}}%
\colorrgb{0.15,0.15,0.15}%%
\put(803,1141){\makebox(0,0)[r]{\strut{}0.05}}%
\colorrgb{0.15,0.15,0.15}%%
\put(803,1727){\makebox(0,0)[r]{\strut{}0.1}}%
\colorrgb{0.15,0.15,0.15}%%
\put(803,2314){\makebox(0,0)[r]{\strut{}0.15}}%
\colorrgb{0.15,0.15,0.15}%%
\put(803,2901){\makebox(0,0)[r]{\strut{}0.2}}%
\colorrgb{0.15,0.15,0.15}%%
\put(803,3488){\makebox(0,0)[r]{\strut{}0.25}}%
\colorrgb{0.15,0.15,0.15}%%
\put(803,4074){\makebox(0,0)[r]{\strut{}0.3}}%
\colorrgb{0.15,0.15,0.15}%%
\put(803,4661){\makebox(0,0)[r]{\strut{}0.35}}%
\colorrgb{0.15,0.15,0.15}%%
\put(935,334){\makebox(0,0){\strut{}0}}%
\colorrgb{0.15,0.15,0.15}%%
\put(1865,334){\makebox(0,0){\strut{}50}}%
\colorrgb{0.15,0.15,0.15}%%
\put(2795,334){\makebox(0,0){\strut{}100}}%
\colorrgb{0.15,0.15,0.15}%%
\put(3725,334){\makebox(0,0){\strut{}150}}%
\colorrgb{0.15,0.15,0.15}%%
\put(4655,334){\makebox(0,0){\strut{}200}}%
\colorrgb{0.15,0.15,0.15}%%
\put(5585,334){\makebox(0,0){\strut{}250}}%
\colorrgb{0.15,0.15,0.15}%%
\put(6515,334){\makebox(0,0){\strut{}300}}%
}%
\gplgaddtomacro\gplfronttext{%
\csname LTb\endcsname%%
\put(66,2607){\rotatebox{-270}{\makebox(0,0){\strut{}Temps d'exécution (s)}}}%
\put(3725,4){\makebox(0,0){\strut{}Taille des matrices}}%
\csname LTb\endcsname%%
\put(1922,4488){\makebox(0,0)[l]{\strut{}Echelonnage non réduit}}%
\csname LTb\endcsname%%
\put(1922,4268){\makebox(0,0)[l]{\strut{}Echelonnage réduit}}%
\csname LTb\endcsname%%
\put(1922,4048){\makebox(0,0)[l]{\strut{}Echelonnage non réduit normalisé}}%
\csname LTb\endcsname%%
\put(1922,3828){\makebox(0,0)[l]{\strut{}Echelonnage réduit normalisé}}%
\csname LTb\endcsname%%
\put(3725,4991){\makebox(0,0){/:Bold Echelonnage de matrices}}%
}%
\gplbacktext
\put(0,0){\includegraphics[width={360.00bp},height={252.00bp}]{plot}}%
\gplfronttext
\end{picture}%
\endgroup

View File

@@ -16,6 +16,10 @@ static void SwapLines(Matrix& mat, std::size_t line1, std::size_t line2) {
static void DivideLine(Matrix& mat, std::size_t line, Matrix::Element number) { static void DivideLine(Matrix& mat, std::size_t line, Matrix::Element number) {
std::transform(std::execution::par_unseq, mat.GetLineIterator(line), mat.GetLineIterator(line + 1), mat.GetLineIterator(line), std::transform(std::execution::par_unseq, mat.GetLineIterator(line), mat.GetLineIterator(line + 1), mat.GetLineIterator(line),
[number](Matrix::Element e) { return e /= number; }); [number](Matrix::Element e) { return e /= number; });
/*for (std::size_t i = 0; i < mat.GetColumnCount(); i++) {
mat.at(line, i) /= number;
}*/
} }
static int FirstNotNullElementIndexOnColumn(Matrix& mat, std::size_t column, std::size_t startLine = 0) { static int FirstNotNullElementIndexOnColumn(Matrix& mat, std::size_t column, std::size_t startLine = 0) {
@@ -38,7 +42,7 @@ static void SimplifyLine(Matrix& mat, std::size_t line, std::size_t pivot_line,
}); });
} }
static void GaussJordanReduced(Matrix& a_Matrix, bool a_Normalise) { static void GaussJordanReducedNorma(Matrix& a_Matrix) {
int indice_ligne_pivot = -1; int indice_ligne_pivot = -1;
for (std::size_t j = 0; j < a_Matrix.GetColumnCount(); j++) { for (std::size_t j = 0; j < a_Matrix.GetColumnCount(); j++) {
@@ -56,9 +60,7 @@ static void GaussJordanReduced(Matrix& a_Matrix, bool a_Normalise) {
Matrix::Element pivot = a_Matrix.at(indice_ligne_pivot, j); Matrix::Element pivot = a_Matrix.at(indice_ligne_pivot, j);
if (a_Normalise) { DivideLine(a_Matrix, indice_ligne_pivot, pivot);
DivideLine(a_Matrix, indice_ligne_pivot, pivot);
}
auto range = std::views::iota(static_cast<std::size_t>(0), a_Matrix.GetRawCount()); auto range = std::views::iota(static_cast<std::size_t>(0), a_Matrix.GetRawCount());
@@ -71,7 +73,7 @@ static void GaussJordanReduced(Matrix& a_Matrix, bool a_Normalise) {
} }
} }
static void GaussJordanTriangular(Matrix& a_Matrix, bool a_Normalise) { static void GaussJordanReduced(Matrix& a_Matrix) {
int indice_ligne_pivot = -1; int indice_ligne_pivot = -1;
for (std::size_t j = 0; j < a_Matrix.GetColumnCount(); j++) { for (std::size_t j = 0; j < a_Matrix.GetColumnCount(); j++) {
@@ -89,25 +91,85 @@ static void GaussJordanTriangular(Matrix& a_Matrix, bool a_Normalise) {
Matrix::Element pivot = a_Matrix.at(indice_ligne_pivot, j); Matrix::Element pivot = a_Matrix.at(indice_ligne_pivot, j);
if (a_Normalise) { auto range = std::views::iota(static_cast<std::size_t>(0), a_Matrix.GetRawCount());
DivideLine(a_Matrix, indice_ligne_pivot, pivot);
// On simplifie les autres lignes
std::for_each(std::execution::par_unseq, range.begin(), range.end(), [&a_Matrix, j, indice_ligne_pivot](std::size_t i) {
if (i != static_cast<std::size_t>(indice_ligne_pivot)) {
SimplifyLine(a_Matrix, i, indice_ligne_pivot, j);
}
});
}
}
static void GaussJordanTriangular(Matrix& a_Matrix) {
int indice_ligne_pivot = -1;
for (std::size_t j = 0; j < a_Matrix.GetColumnCount(); j++) {
int indice_ligne_pivot_trouve = FirstNotNullElementIndexOnColumn(a_Matrix, j, indice_ligne_pivot + 1);
if (indice_ligne_pivot_trouve < 0) // colonne de 0
continue; // on regarde la prochaine colonne
indice_ligne_pivot++;
if (indice_ligne_pivot_trouve != indice_ligne_pivot) {
SwapLines(a_Matrix, indice_ligne_pivot_trouve, indice_ligne_pivot);
} }
Matrix::Element pivot = a_Matrix.at(indice_ligne_pivot, j);
auto range = std::views::iota(static_cast<std::size_t>(indice_ligne_pivot + 1), a_Matrix.GetRawCount()); auto range = std::views::iota(static_cast<std::size_t>(indice_ligne_pivot + 1), a_Matrix.GetRawCount());
// On simplifie les autres lignes après la ligne du pivot // On simplifie les autres lignes après la ligne du pivot
std::for_each(std::execution::par_unseq, range.begin(), range.end(), std::for_each(std::execution::par_unseq, range.begin(), range.end(),
[&a_Matrix, indice_ligne_pivot, j](std::size_t i) { [&a_Matrix, indice_ligne_pivot, j](std::size_t i) { SimplifyLine(a_Matrix, i, indice_ligne_pivot, j); });
SimplifyLine(a_Matrix, i, indice_ligne_pivot, j); }
}); }
static void GaussJordanTriangularNorma(Matrix& a_Matrix) {
int indice_ligne_pivot = -1;
for (std::size_t j = 0; j < a_Matrix.GetColumnCount(); j++) {
int indice_ligne_pivot_trouve = FirstNotNullElementIndexOnColumn(a_Matrix, j, indice_ligne_pivot + 1);
if (indice_ligne_pivot_trouve < 0) // colonne de 0
continue; // on regarde la prochaine colonne
indice_ligne_pivot++;
if (indice_ligne_pivot_trouve != indice_ligne_pivot) {
SwapLines(a_Matrix, indice_ligne_pivot_trouve, indice_ligne_pivot);
}
Matrix::Element pivot = a_Matrix.at(indice_ligne_pivot, j);
DivideLine(a_Matrix, indice_ligne_pivot, pivot);
auto range = std::views::iota(static_cast<std::size_t>(indice_ligne_pivot + 1), a_Matrix.GetRawCount());
// On simplifie les autres lignes après la ligne du pivot
std::for_each(std::execution::par_unseq, range.begin(), range.end(),
[&a_Matrix, indice_ligne_pivot, j](std::size_t i) { SimplifyLine(a_Matrix, i, indice_ligne_pivot, j); });
} }
} }
void GaussJordan(Matrix& a_Matrix, bool a_Reduite, bool a_Normalise) { void GaussJordan(Matrix& a_Matrix, bool a_Reduite, bool a_Normalise) {
if (a_Reduite) if (a_Reduite) {
GaussJordanReduced(a_Matrix, a_Normalise); if (a_Normalise) {
else GaussJordanReducedNorma(a_Matrix);
GaussJordanTriangular(a_Matrix, a_Normalise); } else {
GaussJordanReduced(a_Matrix);
}
} else {
if (a_Normalise) {
GaussJordanTriangularNorma(a_Matrix);
} else {
GaussJordanTriangular(a_Matrix);
}
}
} }
} // namespace Gauss } // namespace Gauss

View File

@@ -2,6 +2,12 @@
#include "Matrix.h" #include "Matrix.h"
#include "test_assert.h" #include "test_assert.h"
#include <chrono>
#include <iostream>
static constexpr int MATRIX_MAX_SIZE = 300;
static constexpr int EXECUTION_COUNT = 1;
struct Test { struct Test {
Matrix mat; Matrix mat;
Matrix res; Matrix res;
@@ -30,6 +36,22 @@ static const std::vector<Test> TEST_MATRICES = {
}}} }}}
}; };
static unsigned int GetRandomInt() {
return rand() % MATRIX_MAX_SIZE + 1;
}
static Matrix GetRandomMatrix(std::size_t a_Raw, std::size_t a_Column) {
Matrix matrix {a_Raw, a_Column};
for (std::size_t i = 0; i < matrix.GetRawCount(); i++) {
for (std::size_t j = 0; j < matrix.GetColumnCount(); j++) {
matrix.at(i, j) = GetRandomInt();
}
}
return matrix;
}
void test() { void test() {
for (Test test : TEST_MATRICES) { for (Test test : TEST_MATRICES) {
Gauss::GaussJordan(test.mat, true, true); Gauss::GaussJordan(test.mat, true, true);
@@ -37,7 +59,26 @@ void test() {
} }
} }
void gaussTest() {
auto start = std::chrono::system_clock::now();
for (int i = 0; i < EXECUTION_COUNT; i++) {
Matrix mat = GetRandomMatrix(500, 500);
Gauss::GaussJordan(mat, false, false);
}
auto end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "\tgauss jordan elapsed time : " << elapsed_seconds.count() << "s" << std::endl;
}
void speedTest() {
gaussTest();
// gaussColumnTest();
}
int main(int argc, char** argv) { int main(int argc, char** argv) {
test(); test();
speedTest();
return 0; return 0;
} }

109
test/test_plot.cpp Normal file
View File

@@ -0,0 +1,109 @@
#include <algorithm>
#include <chrono>
#include <cmath>
#include <execution>
#include <future>
#include <matplot/matplot.h>
#include "Gauss.h"
#include "Matrix.h"
#include "Solver.h"
static constexpr int EXECUTION_COUNT = 100;
static constexpr int MATRIX_MAX_SIZE = 300;
static unsigned int GetRandomInt() {
return rand() % MATRIX_MAX_SIZE + 1;
}
static Matrix GetRandomMatrix(std::size_t a_Raw, std::size_t a_Column) {
Matrix matrix {a_Raw, a_Column};
for (std::size_t i = 0; i < matrix.GetRawCount(); i++) {
for (std::size_t j = 0; j < matrix.GetColumnCount(); j++) {
matrix.at(i, j) = GetRandomInt();
}
}
return matrix;
}
std::vector<double> GaussJordan(const std::vector<double>& x) {
std::vector<double> y;
std::for_each(x.begin(), x.end(), [&y](double size) {
auto start = std::chrono::system_clock::now();
for (int j = 0; j < EXECUTION_COUNT; j++) {
Matrix mat = GetRandomMatrix(size, size);
Gauss::GaussJordan(mat, false, false);
}
auto end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "S " << size << "\n";
y.push_back(elapsed_seconds.count() / static_cast<double>(EXECUTION_COUNT));
});
return y;
}
std::vector<double> GaussJordanReduite(const std::vector<double>& x) {
std::vector<double> y;
std::for_each(x.begin(), x.end(), [&y](double size) {
auto start = std::chrono::system_clock::now();
for (int j = 0; j < EXECUTION_COUNT; j++) {
Matrix mat = GetRandomMatrix(size, size);
Gauss::GaussJordan(mat, true, false);
}
auto end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end - start;
std::cout << "R " << size << "\n";
y.push_back(elapsed_seconds.count() / static_cast<double>(EXECUTION_COUNT));
});
return y;
}
int main() {
srand(time(0));
int start = 1;
std::vector<double> x = matplot::linspace(start, MATRIX_MAX_SIZE, MATRIX_MAX_SIZE - start + 1);
//std::vector<double> x = {5000};
std::vector<double> y, y1, y2, y3;
// y2.resize(x.size());
{
auto result1 = std::async(std::launch::async, &GaussJordan, x);
auto result2 = std::async(std::launch::async, &GaussJordanReduite, x);
y = result1.get();
y1 = result2.get();
}
std::cout << "Fini !\n";
// std::transform(x.begin(), x.end(), y2.begin(), [](double x) { return 1.0 / (100.0 * 100.0) * 0.6 * x * x; });
matplot::title("Echelonnage de matrices");
matplot::xlabel("Taille des matrices");
matplot::ylabel("Temps d'exécution (s)");
matplot::hold(matplot::on);
matplot::plot(x, y);
matplot::plot(x, y1);
auto l = matplot::legend({"Echelonnage non réduit", "Echelonnage réduit", "Echelonnage non réduit normalisé", "Echelonnage réduit normalisé"});
l->location(matplot::legend::general_alignment::topleft);
matplot::show();
return 0;
}

View File

@@ -16,6 +16,16 @@ static int GetRandomInt() {
return rand() % 11 - 5; return rand() % 11 - 5;
} }
#define print_time(i) \
end = std::chrono::system_clock::now(); \
elapsed_seconds = end - start; \
std::cout << "elapsed time " << i << " : " << elapsed_seconds.count() << "s" << std::endl; \
start = std::chrono::system_clock::now()
static unsigned int GetRandomSize() {
return rand() % MATRIX_MAX_SIZE + 1;
}
static Matrix GetRandomMatrix(std::size_t a_Raw, std::size_t a_Column) { static Matrix GetRandomMatrix(std::size_t a_Raw, std::size_t a_Column) {
Matrix matrix {a_Raw, a_Column}; Matrix matrix {a_Raw, a_Column};
@@ -29,34 +39,57 @@ static Matrix GetRandomMatrix(std::size_t a_Raw, std::size_t a_Column) {
} }
static bool Test() { static bool Test() {
Matrix matrix = GetRandomMatrix(rand() % MATRIX_MAX_SIZE + 1, rand() % MATRIX_MAX_SIZE + 1); auto start = std::chrono::system_clock::now();
auto begin = start;
auto end = start;
std::chrono::duration<double> elapsed_seconds = end - start;
for (std::size_t i = 0; i < matrix.GetRawCount(); i++) { std::cout << "Begin\n";
for (std::size_t j = 0; j < matrix.GetColumnCount(); j++) {
matrix.at(i, j) = GetRandomInt(); Matrix matrix = GetRandomMatrix(GetRandomSize(), GetRandomSize());
}
} print_time(1);
Matrix copy = matrix; Matrix copy = matrix;
Vect kernel = solver.Kernel(std::move(copy)); Vect kernel = solver.Kernel(std::move(copy));
print_time(2);
Matrix nullVector {matrix.GetRawCount(), 1}; Matrix nullVector {matrix.GetRawCount(), 1};
nullVector.Fill(0.0); nullVector.Fill(0.0);
for (std::size_t i = 0; i < kernel.GetCardinal(); i++) { for (std::size_t i = 0; i < kernel.GetCardinal(); i++) {
test_assert(matrix * kernel.GetVector(i) == nullVector); Matrix result = matrix * kernel.GetVector(i);
if(!(result == nullVector)) {
test_assert(false);
}
} }
print_time(3);
for (std::size_t i = 0; i < KERNEL_CHECKS; i++) { for (std::size_t i = 0; i < KERNEL_CHECKS; i++) {
Matrix vector = GetRandomMatrix(kernel.GetDimension(), 1); Matrix vector = GetRandomMatrix(kernel.GetDimension(), 1);
test_assert(kernel.IsElementOf(vector) == (matrix * vector == nullVector)); test_assert(kernel.IsElementOf(vector) == (matrix * vector == nullVector));
} }
Vect kernel2 = solver.Kernel(kernel.GetLinearSystem()); print_time(4);
Matrix linearSystem = kernel.GetLinearSystem();
print_time(5);
Vect kernel2 = solver.Kernel(std::move(linearSystem));
test_assert(kernel == kernel2); test_assert(kernel == kernel2);
print_time(6);
elapsed_seconds = end - begin;
std::cout << "final elapsed time: " << elapsed_seconds.count() << "s" << std::endl;
std::cout << "End\n";
return true; return true;
} }
@@ -69,6 +102,7 @@ int main() {
for (int i = 0; i < EXECUTION_COUNT; i++) { for (int i = 0; i < EXECUTION_COUNT; i++) {
auto handle = std::async(std::launch::async, &Test); auto handle = std::async(std::launch::async, &Test);
results.push_back(std::move(handle)); results.push_back(std::move(handle));
// Test();
} }
for (auto& result : results) { for (auto& result : results) {

View File

@@ -7,10 +7,14 @@ set_languages("c++20")
set_warnings("all") set_warnings("all")
add_includedirs("include") add_includedirs("include")
add_requires("matplotplusplus")
-- Solver Library -- Solver Library
target("Pivot") target("Pivot")
set_kind("static") set_kind("static")
add_files("src/*.cpp") add_files("src/*.cpp")
add_cxxflags("-ffast-math")
set_optimize("fastest")
remove_files("src/main.cpp") remove_files("src/main.cpp")
@@ -49,6 +53,7 @@ for _, file in ipairs(os.files("test/test_*.cpp")) do
set_default(false) set_default(false)
add_deps("Pivot") add_deps("Pivot")
add_packages("matplotplusplus")
add_tests("compile_and_run") add_tests("compile_and_run")
end end