Compare commits

...

4 Commits

Author SHA1 Message Date
5a5c247019 english name for symbols
Some checks failed
Linux arm64 / Build (push) Failing after 1m56s
2024-02-23 11:03:38 +01:00
99eca82b3a fix Vect display 2024-02-23 11:02:49 +01:00
3b07ae783f refactor project 2024-02-23 10:48:43 +01:00
82ad2e0696 format project 2024-02-23 10:14:23 +01:00
13 changed files with 190 additions and 201 deletions

View File

@@ -7,6 +7,8 @@ ConstructorInitializerAllOnOneLineOrOnePerLine: true
PointerAlignment: Left
SortIncludes: true
SpacesBeforeTrailingComments: 2
SeparateDefinitionBlocks: Always
SpaceBeforeCpp11BracedList: true
UseTab: Always
MaxEmptyLinesToKeep: 5

75
src/Gauss.cpp Normal file
View File

@@ -0,0 +1,75 @@
#include "Gauss.h"
#include "Matrix.h"
namespace Gauss {
static void GaussNonJordan(Matrix& mat, bool reduite) {
int r = -1;
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
std::size_t indice_ligne_maximum = r + 1;
// Recherche maximum
for (std::size_t i = r + 1; i < mat.GetRawCount(); i++) {
if (std::abs(mat.at(i, j)) > std::abs(mat.at(indice_ligne_maximum, j)))
indice_ligne_maximum = i;
}
// Si A[k,j]≠0 alors (A[k,j] désigne la valeur de la ligne k et de la colonne j)
if (!IsEqualZero(mat.at(indice_ligne_maximum, j))) {
r++;
// Si k≠r alors
if (indice_ligne_maximum != r) {
// Échanger les lignes k et r (On place la ligne du pivot en position r)
for (std::size_t k = 0; k < mat.GetColumnCount(); k++) {
std::swap(mat.at(indice_ligne_maximum, k), mat.at(r, k));
}
}
// Pour i de 1 jusqu'à n (On simplifie les autres lignes)
for (std::size_t i = (reduite ? 0 : j); i < mat.GetRawCount(); i++) {
// Si i≠r alors
if (i != r) {
// Soustraire à la ligne i la ligne r multipliée par A[i,j] (de façon à
// annuler A[i,j])
for (int k = mat.GetColumnCount() - 1; k >= 0; k--) {
long double pivot = mat.at(r, j);
long double anul = mat.at(i, j);
mat.at(i, k) = mat.at(i, k) * pivot - mat.at(r, k) * anul;
}
}
}
}
}
}
static void GaussJordan(Matrix& mat, bool reduite) {
GaussNonJordan(mat, reduite);
for (std::size_t i = 0; i < mat.GetRawCount(); i++) {
int k = -1;
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
if (!IsEqualZero(mat.at(i, j))) {
k = j;
break;
}
}
// ligne de 0
if (k == -1)
break;
// on divise la ligne par (i, k)
long double annul = mat.at(i, k);
for (int j = 0; j < mat.GetColumnCount(); j++) {
mat.at(i, j) /= annul;
}
}
}
void GaussJordan(Matrix& mat, bool reduite, bool normalise) {
if (normalise)
GaussJordan(mat, reduite);
else
GaussNonJordan(mat, reduite);
}
} // namespace Gauss

9
src/Gauss.h Normal file
View File

@@ -0,0 +1,9 @@
#pragma once
class Matrix;
namespace Gauss {
void GaussJordan(Matrix& mat, bool reduite, bool normalise);
} // namespace Gauss

View File

@@ -10,28 +10,30 @@ Matrix::Matrix(const std::string& fileNameInput) {
Load(fileNameInput);
}
Matrix::Matrix(std::size_t lignes, std::size_t colonnes) : m_Lignes(lignes), m_Colonnes(colonnes) {
m_Data.resize(m_Lignes * m_Colonnes);
Matrix::Matrix(std::size_t lignes, std::size_t colonnes) : m_Raws(lignes), m_Columns(colonnes) {
m_Data.resize(m_Raws * m_Columns);
}
Matrix::Matrix(std::size_t lignes, std::size_t colonnes, std::initializer_list<long double>&& initList) :
m_Lignes(lignes), m_Colonnes(colonnes) {
m_Raws(lignes), m_Columns(colonnes) {
m_Data = initList;
m_Data.resize(m_Lignes * m_Colonnes);
m_Data.resize(m_Raws * m_Columns);
}
Matrix::~Matrix() {}
Matrix Matrix::operator*(const Matrix& other) const {
if (m_Colonnes != other.m_Lignes) {
if (m_Columns != other.m_Raws) {
std::cerr << "Mutiplication impossible car la dimensions des matrices est incompatible" << std::endl;
return {1, 1, {0}};
}
Matrix result(m_Lignes, other.m_Colonnes);
Matrix result(m_Raws, other.m_Columns);
for (std::size_t i = 0; i < m_Lignes; ++i) {
for (std::size_t j = 0; j < other.m_Colonnes; ++j) {
for (std::size_t i = 0; i < m_Raws; ++i) {
for (std::size_t j = 0; j < other.m_Columns; ++j) {
long double sum = 0;
for (std::size_t k = 0; k < m_Colonnes; k++) {
for (std::size_t k = 0; k < m_Columns; k++) {
sum += at(i, k) * other.at(k, j);
}
result.at(i, j) = sum;
@@ -41,10 +43,10 @@ Matrix Matrix::operator*(const Matrix& other) const {
}
void Matrix::Print() const {
for (size_t i = 0; i < m_Lignes; ++i) {
for (size_t i = 0; i < m_Raws; ++i) {
std::cout << "[ ";
for (size_t j = 0; j < m_Colonnes; ++j) {
std::size_t indice = i * m_Lignes + j;
for (size_t j = 0; j < m_Columns; ++j) {
std::size_t indice = i * m_Raws + j;
std::cout << at(i, j) << " ";
}
std::cout << "]";
@@ -52,16 +54,9 @@ void Matrix::Print() const {
}
}
void Matrix::PrintDebug() {
#ifndef NDEBUG
Print();
std::cout << "\n";
#endif
}
void Matrix::Insert() {
for (size_t i = 0; i < m_Lignes; ++i) {
for (size_t j = 0; j < m_Colonnes; ++j) {
for (size_t i = 0; i < m_Raws; ++i) {
for (size_t j = 0; j < m_Columns; ++j) {
std::cin >> at(i, j);
}
std::cout << std::endl;
@@ -69,7 +64,7 @@ void Matrix::Insert() {
}
void Matrix::Save(const std::string& fileName) {
std::ofstream out{fileName};
std::ofstream out {fileName};
if (!out) {
std::cerr << "Impossible de sauvegarder la matrice !\n";
return;
@@ -78,7 +73,7 @@ void Matrix::Save(const std::string& fileName) {
}
void Matrix::Load(const std::string& filename) {
std::ifstream in{filename};
std::ifstream in {filename};
if (!in) {
std::cerr << "Impossible de charger la matrice !\n";
return;
@@ -87,56 +82,38 @@ void Matrix::Load(const std::string& filename) {
}
void Matrix::Transpose() {
Matrix result{m_Colonnes, m_Lignes};
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = 0; j < m_Colonnes; j++) {
Matrix result {m_Columns, m_Raws};
for (std::size_t i = 0; i < m_Raws; i++) {
for (std::size_t j = 0; j < m_Columns; j++) {
result.at(j, i) = at(i, j);
}
}
*this = result;
}
void Matrix::Identity() {
assert(m_Lignes == m_Colonnes);
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = i; j < m_Colonnes; j++) {
at(i, j) = i == j;
Matrix Matrix::Identity(std::size_t taille) {
Matrix id {taille, taille};
for (std::size_t i = 0; i < taille; i++) {
for (std::size_t j = i; j < taille; j++) {
id.at(i, j) = (i == j);
}
}
}
Matrix Matrix::Identity(std::size_t taille) {
Matrix id{taille, taille};
id.Identity();
return id;
}
bool Matrix::IsInversed() const {
for (std::size_t i = 0; i < m_Lignes; ++i) {
std::size_t j;
for (j = 0; j < m_Colonnes; ++j) {
if (!IsEqualZero(at(i, j))) {
break;
}
return false;
}
}
return true;
}
void Matrix::Augment(const Matrix& droite) {
assert(droite.m_Raws == m_Raws);
Matrix temp {m_Raws, m_Columns + droite.m_Columns};
void Matrix::Augmenter(const Matrix& droite) {
assert(droite.m_Lignes == m_Lignes);
Matrix temp{m_Lignes, m_Colonnes + droite.m_Colonnes};
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = 0; j < m_Colonnes; j++) {
for (std::size_t i = 0; i < m_Raws; i++) {
for (std::size_t j = 0; j < m_Columns; j++) {
temp.at(i, j) = at(i, j);
}
}
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = 0; j < droite.m_Colonnes; j++) {
temp.at(i, j + m_Colonnes) = droite.at(i, j);
for (std::size_t i = 0; i < m_Raws; i++) {
for (std::size_t j = 0; j < droite.m_Columns; j++) {
temp.at(i, j + m_Columns) = droite.at(i, j);
}
}
@@ -144,11 +121,11 @@ void Matrix::Augmenter(const Matrix& droite) {
}
bool Matrix::operator==(const Matrix& other) const {
if (m_Lignes != other.m_Lignes || m_Colonnes != other.m_Colonnes)
if (m_Raws != other.m_Raws || m_Columns != other.m_Columns)
return false;
for (std::size_t i = 0; i < m_Lignes; i++) {
for (std::size_t j = 0; j < m_Colonnes; j++) {
for (std::size_t i = 0; i < m_Raws; i++) {
for (std::size_t j = 0; j < m_Columns; j++) {
if (!IsEqualZero(at(i, j) - other.at(i, j)))
return false;
}
@@ -157,95 +134,29 @@ bool Matrix::operator==(const Matrix& other) const {
return true;
}
void Matrix::GaussNonJordan(bool reduite) {
int r = -1;
for (std::size_t j = 0; j < m_Colonnes; j++) {
std::size_t indice_ligne_maximum = r + 1;
// Recherche maximum
for (std::size_t i = r + 1; i < m_Lignes; i++) {
if (std::abs(at(i, j)) > std::abs(at(indice_ligne_maximum, j)))
indice_ligne_maximum = i;
}
// std::cout << "l'indice du maximum est : " << indice_ligne_maximum << "\n\n";
// Si A[k,j]≠0 alors (A[k,j] désigne la valeur de la ligne k et de la colonne j)
if (!IsEqualZero(at(indice_ligne_maximum, j))) {
r++;
// PrintDebug();
// Si k≠r alors
if (indice_ligne_maximum != r) {
// Échanger les lignes k et r (On place la ligne du pivot en position r)
// std::cout << "On échange les lignes " << indice_ligne_maximum << " et " << r << '\n';
for (std::size_t k = 0; k < m_Colonnes; k++) {
std::swap(at(indice_ligne_maximum, k), at(r, k));
}
}
// Pour i de 1 jusqu'à n (On simplifie les autres lignes)
for (std::size_t i = (reduite ? 0 : j); i < m_Lignes; i++) {
// Si i≠r alors
if (i != r) {
// Soustraire à la ligne i la ligne r multipliée par A[i,j] (de façon à
// annuler A[i,j])
for (int k = m_Colonnes - 1; k >= 0; k--) {
long double pivot = at(r, j);
long double anul = at(i, j);
at(i, k) = at(i, k) * pivot - at(r, k) * anul;
}
}
}
}
}
}
void Matrix::GaussJordan(bool reduite) {
GaussNonJordan(reduite);
for (std::size_t i = 0; i < m_Lignes; i++) {
int k = -1;
for (std::size_t j = 0; j < m_Colonnes; j++) {
if (!IsEqualZero(at(i, j))) {
k = j;
break;
}
}
// ligne de 0
if (k == -1)
break;
// on divise la ligne par (i, k)
long double annul = at(i, k);
for (int j = 0; j < m_Colonnes; j++) {
at(i, j) /= annul;
}
}
}
long double& Matrix::operator[](std::size_t indice) {
return m_Data[indice];
}
long double& Matrix::at(std::size_t ligne, std::size_t colonne) {
return m_Data[ligne * m_Colonnes + colonne];
return m_Data[ligne * m_Columns + colonne];
}
long double Matrix::at(std::size_t ligne, std::size_t colonne) const {
return m_Data[ligne * m_Colonnes + colonne];
return m_Data[ligne * m_Columns + colonne];
}
std::size_t Matrix::GetRawCount() const {
return m_Lignes;
return m_Raws;
}
std::size_t Matrix::GetColumnCount() const {
return m_Colonnes;
return m_Columns;
}
Matrix Matrix::SubMatrix(std::size_t origine_ligne, std::size_t origine_colonne, std::size_t ligne, std::size_t colonne) const {
assert(m_Lignes >= ligne && m_Colonnes >= colonne);
Matrix result{ligne, colonne};
assert(m_Raws >= ligne && m_Columns >= colonne);
Matrix result {ligne, colonne};
for (std::size_t i = 0; i < ligne; i++) {
for (std::size_t j = 0; j < colonne; j++) {
@@ -257,9 +168,9 @@ Matrix Matrix::SubMatrix(std::size_t origine_ligne, std::size_t origine_colonne,
}
std::ostream& operator<<(std::ostream& stream, const Matrix& mat) {
stream << mat.m_Lignes << " " << mat.m_Colonnes << "\n";
for (std::size_t i = 0; i < mat.m_Lignes; i++) {
for (std::size_t j = 0; j < mat.m_Colonnes; j++) {
stream << mat.m_Raws << " " << mat.m_Columns << "\n";
for (std::size_t i = 0; i < mat.m_Raws; i++) {
for (std::size_t j = 0; j < mat.m_Columns; j++) {
stream << mat.at(i, j) << " ";
}
stream << "\n";
@@ -268,10 +179,10 @@ std::ostream& operator<<(std::ostream& stream, const Matrix& mat) {
}
std::istream& operator>>(std::istream& stream, Matrix& mat) {
stream >> mat.m_Lignes >> mat.m_Colonnes;
mat.m_Data.resize(mat.m_Lignes * mat.m_Colonnes);
for (std::size_t i = 0; i < mat.m_Lignes; i++) {
for (std::size_t j = 0; j < mat.m_Colonnes; j++) {
stream >> mat.m_Raws >> mat.m_Columns;
mat.m_Data.resize(mat.m_Raws * mat.m_Columns);
for (std::size_t i = 0; i < mat.m_Raws; i++) {
for (std::size_t j = 0; j < mat.m_Columns; j++) {
stream >> mat.at(i, j);
}
}

View File

@@ -7,54 +7,39 @@
class Matrix {
private:
std::size_t m_Lignes;
std::size_t m_Colonnes;
std::size_t m_Raws;
std::size_t m_Columns;
std::vector<long double> m_Data;
public:
Matrix(const std::string& fileNameInput);
Matrix(std::size_t lignes, std::size_t colonnes);
Matrix(std::size_t lignes, std::size_t colonnes, std::initializer_list<long double>&& initList);
Matrix(std::size_t raws, std::size_t columns);
Matrix(std::size_t raws, std::size_t columns, std::initializer_list<long double>&& initList);
~Matrix();
std::size_t GetRawCount() const;
std::size_t GetColumnCount() const;
Matrix operator*(const Matrix& other) const;
void GaussNonJordan(bool reduite);
void GaussJordan(bool reduite);
void Insert();
void Print() const;
void PrintDebug();
void Insert();
void Save(const std::string& fileName);
void Load(const std::string& filename);
void Transpose();
void Identity();
static Matrix Identity(std::size_t size);
static Matrix Identity(std::size_t taille);
void Augment(const Matrix& right);
bool IsInversed() const;
void Augmenter(const Matrix& droite);
Matrix SubMatrix(std::size_t origine_ligne, std::size_t origine_colonne, std::size_t ligne, std::size_t colonne) const;
Matrix SubMatrix(std::size_t raw_origin, std::size_t column_origin, std::size_t raw, std::size_t column) const;
bool operator==(const Matrix& other) const;
Matrix operator*(const Matrix& other) const;
long double& operator[](std::size_t index);
long double& operator[](std::size_t indice);
long double& at(std::size_t ligne, std::size_t colonne);
long double at(std::size_t ligne, std::size_t colonne) const;
long double& at(std::size_t raw, std::size_t column);
long double at(std::size_t raw, std::size_t column) const;
friend std::ostream& operator<<(std::ostream& stream, const Matrix& mat);
friend std::istream& operator>>(std::istream& stream, Matrix& mat);

View File

@@ -7,6 +7,8 @@ class NR {
public:
NR() : m_Numerator(0), m_Denominator(1) {}
NR(int entier) : m_Numerator(entier), m_Denominator(1) {}
NR(int numerator, int denominator) : m_Numerator(numerator), m_Denominator(denominator) {}
};

View File

@@ -1,21 +1,23 @@
#include "Solver.h"
#include "Gauss.h"
Solver::Solver(const Matrix& mat) : m_Matrix(mat) {}
Vect Solver::Image() const {
Matrix result = m_Matrix;
result.Transpose();
result.GaussJordan(true);
Gauss::GaussJordan(result, true, true);
result.Transpose();
return {result};
}
// https://en.wikipedia.org/wiki/Kernel_(linear_algebra)#Computation_by_Gaussian_elimination
Vect Solver::Noyau() const {
Vect Solver::Kernel() const {
Matrix result = m_Matrix;
result.Transpose();
result.Augmenter(Matrix::Identity(result.GetRawCount()));
result.GaussJordan(true);
result.Augment(Matrix::Identity(result.GetRawCount()));
Gauss::GaussJordan(result, true, true);
result.Transpose();
// nombre de colonnes non nulles
@@ -25,19 +27,19 @@ Vect Solver::Noyau() const {
result.GetColumnCount() - origine_colonne)};
}
VectAffine Solver::SystemeTriangulaire() const {
VectAffine Solver::TriangularSystem() const {
Matrix mat = m_Matrix;
mat.GaussJordan(true);
Gauss::GaussJordan(mat, true, true);
Solver solver{mat.SubMatrix(0, 0, mat.GetRawCount(), mat.GetColumnCount() - 1)};
Solver solver {mat.SubMatrix(0, 0, mat.GetRawCount(), mat.GetColumnCount() - 1)};
Vect noyau = solver.Noyau();
Vect noyau = solver.Kernel();
Matrix origin = mat.SubMatrix(0, mat.GetColumnCount() - 1, mat.GetRawCount(), 1);
return {noyau, origin};
}
std::size_t Solver::Rang() const {
std::size_t Solver::Rank() const {
Vect image = Image();
return image.GetCardinal();
}

View File

@@ -8,12 +8,13 @@ class Solver {
public:
Solver(const Matrix& mat);
~Solver() {}
Vect Image() const;
Vect Noyau() const;
Vect Kernel() const;
VectAffine SystemeTriangulaire() const;
VectAffine TriangularSystem() const;
std::size_t Rang() const;
std::size_t Rank() const;
};

View File

@@ -1,5 +1,6 @@
#include "Vect.h"
#include "Gauss.h"
#include "Solver.h"
#include <cassert>
#include <iostream>
@@ -43,9 +44,9 @@ bool Vect::operator==(const Vect& other) const {
}
void Vect::AddVector(const Matrix& mat) {
m_Data.Augmenter(mat);
m_Data.Augment(mat);
m_Data.Transpose();
m_Data.GaussNonJordan(false);
Gauss::GaussJordan(m_Data, false, false);
m_Data.Transpose();
Simplify();
}
@@ -58,8 +59,8 @@ Matrix Vect::GetLinearSystem() const {
Matrix vect = m_Data;
vect.Transpose();
Solver solver{vect};
vect = solver.Noyau().m_Data;
Solver solver {vect};
vect = solver.Kernel().m_Data;
vect.Transpose();
return vect;
}
@@ -68,7 +69,7 @@ void Vect::Print() const {
std::cout << "Espace vectoriel de dimension " << GetCardinal() << " de base :\n\n";
for (std::size_t i = 0; i < m_Data.GetRawCount(); i++) {
for (std::size_t j = 0; j < m_Data.GetColumnCount(); j++) {
printf("[ %u ]\t", static_cast<float>(m_Data.at(i, j)));
std::cout << "[ " << m_Data.at(i, j) << " ]\t";
}
std::cout << "\n";
}

View File

@@ -38,7 +38,6 @@ class Vect {
void Simplify();
};
class VectAffine {
private:
Vect m_Base;

View File

@@ -1,3 +1,4 @@
#include "Gauss.h"
#include "Solver.h"
#include <iostream>
@@ -16,13 +17,13 @@ void test() {
mat.Print();
// mat.Save("matrice4x4echelonne.mat"); */
Matrix mat2{"matrice4x4.mat"};
Matrix mat2 {"matrice4x4.mat"};
mat2.Print();
Solver solver{mat2};
Solver solver {mat2};
Vect image = solver.Image();
Vect noyau = solver.Noyau();
Vect noyau = solver.Kernel();
std::cout << "\tImage :\n";
image.Print();
@@ -34,7 +35,7 @@ void test() {
noyau.GetLinearSystem().Print();
std::cout << "\n\n";
solver.SystemeTriangulaire().Print();
solver.TriangularSystem().Print();
}
void prompt() {
@@ -52,7 +53,7 @@ void prompt() {
mat.Print();
mat.GaussJordan(true);
Gauss::GaussJordan(mat, true, true);
mat.Print();
}

View File

@@ -1,3 +1,4 @@
#include "Gauss.h"
#include "Matrix.h"
#include <cassert>
@@ -5,9 +6,9 @@
#error "Il faut être en debug mode ! xmake f -m debug"
#endif
struct Test{
Matrix mat;
Matrix res;
struct Test {
Matrix mat;
Matrix res;
};
static const std::vector<Test> TEST_MATRICES = {
@@ -35,9 +36,9 @@ static const std::vector<Test> TEST_MATRICES = {
void test() {
for (Test test : TEST_MATRICES) {
test.mat.GaussJordan(true);
assert(test.mat == test.res);
}
Gauss::GaussJordan(test.mat, true, true);
assert(test.mat == test.res);
}
}
int main(int argc, char** argv) {

View File

@@ -14,18 +14,18 @@ int main() {
std::cout << "Opening " << fileName << " ...\n";
std::ifstream in{fileName};
std::ifstream in {fileName};
Matrix mat{1, 1}, imageMat{1, 1}, noyauMat{1, 1};
Matrix mat {1, 1}, imageMat {1, 1}, noyauMat {1, 1};
in >> mat >> imageMat >> noyauMat;
Vect image{imageMat};
Vect noyau{noyauMat};
Vect image {imageMat};
Vect noyau {noyauMat};
Solver solver{mat};
Solver solver {mat};
assert(solver.Image() == image);
assert(solver.Noyau() == noyau);
assert(solver.Kernel() == noyau);
}
return 0;
}