big internal rework
This commit is contained in:
110
src/Gauss.cpp
110
src/Gauss.cpp
@@ -4,72 +4,66 @@
|
||||
|
||||
namespace Gauss {
|
||||
|
||||
static void GaussNonJordan(Matrix& mat, bool reduite) {
|
||||
int r = -1;
|
||||
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
|
||||
std::size_t indice_ligne_maximum = r + 1;
|
||||
|
||||
// Recherche maximum
|
||||
for (std::size_t i = r + 1; i < mat.GetRawCount(); i++) {
|
||||
if (std::abs(mat.at(i, j)) > std::abs(mat.at(indice_ligne_maximum, j)))
|
||||
indice_ligne_maximum = i;
|
||||
}
|
||||
|
||||
// Si A[k,j]≠0 alors (A[k,j] désigne la valeur de la ligne k et de la colonne j)
|
||||
if (!IsEqualZero(mat.at(indice_ligne_maximum, j))) {
|
||||
r++;
|
||||
|
||||
// Si k≠r alors
|
||||
if (indice_ligne_maximum != r) {
|
||||
// Échanger les lignes k et r (On place la ligne du pivot en position r)
|
||||
for (std::size_t k = 0; k < mat.GetColumnCount(); k++) {
|
||||
std::swap(mat.at(indice_ligne_maximum, k), mat.at(r, k));
|
||||
}
|
||||
}
|
||||
|
||||
// Pour i de 1 jusqu'à n (On simplifie les autres lignes)
|
||||
for (std::size_t i = (reduite ? 0 : j); i < mat.GetRawCount(); i++) {
|
||||
// Si i≠r alors
|
||||
if (i != r) {
|
||||
// Soustraire à la ligne i la ligne r multipliée par A[i,j] (de façon à
|
||||
// annuler A[i,j])
|
||||
for (int k = mat.GetColumnCount() - 1; k >= 0; k--) {
|
||||
long double pivot = mat.at(r, j);
|
||||
long double anul = mat.at(i, j);
|
||||
mat.at(i, k) = mat.at(i, k) * pivot - mat.at(r, k) * anul;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
static void SwapLines(Matrix& mat, std::size_t line1, std::size_t line2) {
|
||||
for (std::size_t k = 0; k < mat.GetColumnCount(); k++) {
|
||||
std::swap(mat.at(line1, k), mat.at(line2, k));
|
||||
}
|
||||
}
|
||||
|
||||
static void GaussJordan(Matrix& mat, bool reduite) {
|
||||
GaussNonJordan(mat, reduite);
|
||||
for (std::size_t i = 0; i < mat.GetRawCount(); i++) {
|
||||
int k = -1;
|
||||
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
|
||||
if (!IsEqualZero(mat.at(i, j))) {
|
||||
k = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// ligne de 0
|
||||
if (k == -1)
|
||||
break;
|
||||
// on divise la ligne par (i, k)
|
||||
long double annul = mat.at(i, k);
|
||||
for (int j = 0; j < mat.GetColumnCount(); j++) {
|
||||
mat.at(i, j) /= annul;
|
||||
static void DivideLine(Matrix& mat, std::size_t line, Matrix::Element number) {
|
||||
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
|
||||
mat.at(line, j) /= number;
|
||||
}
|
||||
}
|
||||
|
||||
static int FirstNotNullElementIndexOnColumn(Matrix& mat, std::size_t column, std::size_t startLine = 0) {
|
||||
for (std::size_t i = startLine; i < mat.GetRawCount(); i++) {
|
||||
if (!IsEqualZero(mat.at(i, column))) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
static void SimplifyLine(Matrix& mat, std::size_t line, std::size_t pivot_line, std::size_t pivot_column) {
|
||||
const Matrix::Element pivot = mat.at(pivot_line, pivot_column);
|
||||
const Matrix::Element anul = mat.at(line, pivot_column);
|
||||
|
||||
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
|
||||
mat.at(line, j) = mat.at(line, j) * pivot - mat.at(pivot_line, j) * anul;
|
||||
}
|
||||
}
|
||||
|
||||
void GaussJordan(Matrix& mat, bool reduite, bool normalise) {
|
||||
if (normalise)
|
||||
GaussJordan(mat, reduite);
|
||||
else
|
||||
GaussNonJordan(mat, reduite);
|
||||
int indice_ligne_pivot = -1;
|
||||
|
||||
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
|
||||
|
||||
int indice_ligne_pivot_trouve = FirstNotNullElementIndexOnColumn(mat, j, indice_ligne_pivot + 1);
|
||||
|
||||
if (indice_ligne_pivot_trouve < 0) // colonne de 0
|
||||
continue; // on regarde la prochaine colonne
|
||||
|
||||
indice_ligne_pivot++;
|
||||
|
||||
if (indice_ligne_pivot_trouve != indice_ligne_pivot) {
|
||||
SwapLines(mat, indice_ligne_pivot_trouve, indice_ligne_pivot);
|
||||
}
|
||||
|
||||
Matrix::Element pivot = mat.at(indice_ligne_pivot, j);
|
||||
|
||||
if (normalise) {
|
||||
DivideLine(mat, indice_ligne_pivot, pivot);
|
||||
}
|
||||
|
||||
// On simplifie les autres lignes
|
||||
for (std::size_t i = (reduite ? 0 : j); i < mat.GetRawCount(); i++) {
|
||||
// Pour les lignes autre que la ligne pivot
|
||||
if (i != static_cast<std::size_t>(indice_ligne_pivot)) {
|
||||
SimplifyLine(mat, i, indice_ligne_pivot, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Gauss
|
||||
@@ -4,6 +4,12 @@ class Matrix;
|
||||
|
||||
namespace Gauss {
|
||||
|
||||
/**
|
||||
* \brief Echelonne une matrice en utilisant l'algorithme de Gauss-Jordan
|
||||
* \param mat La matrice à échelonner
|
||||
* \param reduite Mets des 0 au dessus des pivots
|
||||
* \param normalise Mets les pivots à 1
|
||||
*/
|
||||
void GaussJordan(Matrix& mat, bool reduite, bool normalise);
|
||||
|
||||
} // namespace Gauss
|
||||
101
src/IO.cpp
Normal file
101
src/IO.cpp
Normal file
@@ -0,0 +1,101 @@
|
||||
#include "IO.h"
|
||||
|
||||
#include "Vect.h"
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
std::ostream& operator<<(std::ostream& stream, const Matrix& mat) {
|
||||
stream << mat.GetRawCount() << " " << mat.GetColumnCount() << "\n";
|
||||
for (std::size_t i = 0; i < mat.GetRawCount(); i++) {
|
||||
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
|
||||
stream << mat.at(i, j) << " ";
|
||||
}
|
||||
stream << "\n";
|
||||
}
|
||||
return stream;
|
||||
}
|
||||
|
||||
std::istream& operator>>(std::istream& stream, Matrix& mat) {
|
||||
std::size_t raw, column;
|
||||
stream >> raw >> column;
|
||||
|
||||
Matrix result {raw, column};
|
||||
mat = result;
|
||||
|
||||
for (std::size_t i = 0; i < mat.GetRawCount(); i++) {
|
||||
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
|
||||
stream >> mat.at(i, j);
|
||||
}
|
||||
}
|
||||
|
||||
return stream;
|
||||
}
|
||||
|
||||
Matrix LoadMatrix(const std::string& fileName) {
|
||||
std::ifstream in {fileName};
|
||||
if (!in) {
|
||||
std::cerr << "Impossible de charger la matrice !\n";
|
||||
return {};
|
||||
}
|
||||
Matrix result;
|
||||
in >> result;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void SaveMatrix(const Matrix& mat, const std::string& fileName) {
|
||||
std::ofstream out {fileName};
|
||||
if (!out) {
|
||||
std::cerr << "Impossible de sauvegarder la matrice !\n";
|
||||
return;
|
||||
}
|
||||
out << mat;
|
||||
}
|
||||
|
||||
Matrix InsertMatrix() {
|
||||
std::cout << "Quelle est le nombre de lignes de votre matrice ?" << std::endl;
|
||||
std::size_t lignes;
|
||||
std::cin >> lignes;
|
||||
std::cout << "Quelle est le nombre de colonnes de votre matrice ?" << std::endl;
|
||||
std::size_t colonnes;
|
||||
std::cin >> colonnes;
|
||||
std::cout << "Rentrez les coefficients de la matrice" << std::endl;
|
||||
Matrix result(lignes, colonnes);
|
||||
for (size_t i = 0; i < result.GetRawCount(); ++i) {
|
||||
for (size_t j = 0; j < result.GetColumnCount(); ++j) {
|
||||
std::cin >> result.at(i, j);
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void Print(const Matrix& mat) {
|
||||
for (size_t i = 0; i < mat.GetRawCount(); ++i) {
|
||||
std::cout << "[ ";
|
||||
for (size_t j = 0; j < mat.GetColumnCount(); ++j) {
|
||||
std::cout << mat.at(i, j) << " ";
|
||||
}
|
||||
std::cout << "]";
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void Print(const Vect& vect) {
|
||||
std::cout << "Espace vectoriel de dimension " << vect.GetCardinal() << " de base :\n\n";
|
||||
for (std::size_t i = 0; i < vect.GetDimension(); i++) {
|
||||
for (std::size_t j = 0; j < vect.GetCardinal(); j++) {
|
||||
Matrix vector = vect.GetVector(j);
|
||||
std::cout << "[ " << vector.at(i, 0) << " ]\t";
|
||||
}
|
||||
std::cout << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
void Print(const VectAffine& vect) {
|
||||
std::cout << "\tEspace Affine :\n\n";
|
||||
Print(vect.GetBase());
|
||||
std::cout << "\nOrigine :\n\n";
|
||||
Print(vect.GetOrigin());
|
||||
}
|
||||
19
src/IO.h
Normal file
19
src/IO.h
Normal file
@@ -0,0 +1,19 @@
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
|
||||
class Matrix;
|
||||
class Vect;
|
||||
class VectAffine;
|
||||
|
||||
std::ostream& operator<<(std::ostream& stream, const Matrix& mat);
|
||||
std::istream& operator>>(std::istream& stream, Matrix& mat);
|
||||
|
||||
Matrix LoadMatrix(const std::string& fileName);
|
||||
void SaveMatrix(const Matrix& mat, const std::string& fileName);
|
||||
|
||||
Matrix InsertMatrix();
|
||||
|
||||
void Print(const Matrix& mat);
|
||||
void Print(const Vect& vect);
|
||||
void Print(const VectAffine& vect);
|
||||
@@ -1,20 +1,17 @@
|
||||
#include "Matrix.h"
|
||||
|
||||
#include "IO.h"
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
Matrix::Matrix(const std::string& fileNameInput) {
|
||||
Load(fileNameInput);
|
||||
}
|
||||
|
||||
Matrix::Matrix(std::size_t lignes, std::size_t colonnes) : m_Raws(lignes), m_Columns(colonnes) {
|
||||
m_Data.resize(m_Raws * m_Columns);
|
||||
}
|
||||
|
||||
Matrix::Matrix(std::size_t lignes, std::size_t colonnes, std::initializer_list<long double>&& initList) :
|
||||
Matrix::Matrix(std::size_t lignes, std::size_t colonnes, std::initializer_list<Element>&& initList) :
|
||||
m_Raws(lignes), m_Columns(colonnes) {
|
||||
m_Data = initList;
|
||||
m_Data.resize(m_Raws * m_Columns);
|
||||
@@ -25,14 +22,14 @@ Matrix::~Matrix() {}
|
||||
Matrix Matrix::operator*(const Matrix& other) const {
|
||||
if (m_Columns != other.m_Raws) {
|
||||
std::cerr << "Mutiplication impossible car la dimensions des matrices est incompatible" << std::endl;
|
||||
return {1, 1, {0}};
|
||||
return {};
|
||||
}
|
||||
|
||||
Matrix result(m_Raws, other.m_Columns);
|
||||
|
||||
for (std::size_t i = 0; i < m_Raws; ++i) {
|
||||
for (std::size_t j = 0; j < other.m_Columns; ++j) {
|
||||
long double sum = 0;
|
||||
Element sum = 0;
|
||||
for (std::size_t k = 0; k < m_Columns; k++) {
|
||||
sum += at(i, k) * other.at(k, j);
|
||||
}
|
||||
@@ -42,44 +39,6 @@ Matrix Matrix::operator*(const Matrix& other) const {
|
||||
return result;
|
||||
}
|
||||
|
||||
void Matrix::Print() const {
|
||||
for (size_t i = 0; i < m_Raws; ++i) {
|
||||
std::cout << "[ ";
|
||||
for (size_t j = 0; j < m_Columns; ++j) {
|
||||
std::cout << at(i, j) << " ";
|
||||
}
|
||||
std::cout << "]";
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void Matrix::Insert() {
|
||||
for (size_t i = 0; i < m_Raws; ++i) {
|
||||
for (size_t j = 0; j < m_Columns; ++j) {
|
||||
std::cin >> at(i, j);
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void Matrix::Save(const std::string& fileName) {
|
||||
std::ofstream out {fileName};
|
||||
if (!out) {
|
||||
std::cerr << "Impossible de sauvegarder la matrice !\n";
|
||||
return;
|
||||
}
|
||||
out << *this;
|
||||
}
|
||||
|
||||
void Matrix::Load(const std::string& filename) {
|
||||
std::ifstream in {filename};
|
||||
if (!in) {
|
||||
std::cerr << "Impossible de charger la matrice !\n";
|
||||
return;
|
||||
}
|
||||
in >> *this;
|
||||
}
|
||||
|
||||
void Matrix::Transpose() {
|
||||
Matrix result {m_Columns, m_Raws};
|
||||
for (std::size_t i = 0; i < m_Raws; i++) {
|
||||
@@ -133,15 +92,15 @@ bool Matrix::operator==(const Matrix& other) const {
|
||||
return true;
|
||||
}
|
||||
|
||||
long double& Matrix::operator[](std::size_t indice) {
|
||||
Matrix::Element& Matrix::operator[](std::size_t indice) {
|
||||
return m_Data[indice];
|
||||
}
|
||||
|
||||
long double& Matrix::at(std::size_t ligne, std::size_t colonne) {
|
||||
Matrix::Element& Matrix::at(std::size_t ligne, std::size_t colonne) {
|
||||
return m_Data[ligne * m_Columns + colonne];
|
||||
}
|
||||
|
||||
long double Matrix::at(std::size_t ligne, std::size_t colonne) const {
|
||||
Matrix::Element Matrix::at(std::size_t ligne, std::size_t colonne) const {
|
||||
return m_Data[ligne * m_Columns + colonne];
|
||||
}
|
||||
|
||||
@@ -165,25 +124,3 @@ Matrix Matrix::SubMatrix(std::size_t origine_ligne, std::size_t origine_colonne,
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& stream, const Matrix& mat) {
|
||||
stream << mat.m_Raws << " " << mat.m_Columns << "\n";
|
||||
for (std::size_t i = 0; i < mat.m_Raws; i++) {
|
||||
for (std::size_t j = 0; j < mat.m_Columns; j++) {
|
||||
stream << mat.at(i, j) << " ";
|
||||
}
|
||||
stream << "\n";
|
||||
}
|
||||
return stream;
|
||||
}
|
||||
|
||||
std::istream& operator>>(std::istream& stream, Matrix& mat) {
|
||||
stream >> mat.m_Raws >> mat.m_Columns;
|
||||
mat.m_Data.resize(mat.m_Raws * mat.m_Columns);
|
||||
for (std::size_t i = 0; i < mat.m_Raws; i++) {
|
||||
for (std::size_t j = 0; j < mat.m_Columns; j++) {
|
||||
stream >> mat.at(i, j);
|
||||
}
|
||||
}
|
||||
return stream;
|
||||
}
|
||||
|
||||
24
src/Matrix.h
24
src/Matrix.h
@@ -6,26 +6,23 @@
|
||||
#include <vector>
|
||||
|
||||
class Matrix {
|
||||
public:
|
||||
typedef long double Element;
|
||||
|
||||
private:
|
||||
std::size_t m_Raws;
|
||||
std::size_t m_Columns;
|
||||
std::vector<long double> m_Data;
|
||||
std::vector<Element> m_Data;
|
||||
|
||||
public:
|
||||
Matrix(const std::string& fileNameInput);
|
||||
Matrix() : m_Raws(0), m_Columns(0) {}
|
||||
Matrix(std::size_t raws, std::size_t columns);
|
||||
Matrix(std::size_t raws, std::size_t columns, std::initializer_list<long double>&& initList);
|
||||
Matrix(std::size_t raws, std::size_t columns, std::initializer_list<Element>&& initList);
|
||||
~Matrix();
|
||||
|
||||
std::size_t GetRawCount() const;
|
||||
std::size_t GetColumnCount() const;
|
||||
|
||||
void Insert();
|
||||
void Print() const;
|
||||
|
||||
void Save(const std::string& fileName);
|
||||
void Load(const std::string& filename);
|
||||
|
||||
void Transpose();
|
||||
|
||||
static Matrix Identity(std::size_t size);
|
||||
@@ -36,13 +33,10 @@ class Matrix {
|
||||
|
||||
bool operator==(const Matrix& other) const;
|
||||
Matrix operator*(const Matrix& other) const;
|
||||
long double& operator[](std::size_t index);
|
||||
Element& operator[](std::size_t index);
|
||||
|
||||
long double& at(std::size_t raw, std::size_t column);
|
||||
long double at(std::size_t raw, std::size_t column) const;
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& stream, const Matrix& mat);
|
||||
friend std::istream& operator>>(std::istream& stream, Matrix& mat);
|
||||
Element& at(std::size_t raw, std::size_t column);
|
||||
Element at(std::size_t raw, std::size_t column) const;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
|
||||
39
src/Vect.cpp
39
src/Vect.cpp
@@ -5,6 +5,15 @@
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
static bool IsColumnNull(Matrix& mat, std::size_t column) {
|
||||
for (std::size_t i = 0; i < mat.GetRawCount(); i++) {
|
||||
if (!IsEqualZero(mat.at(i, column))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
Vect::Vect(const Matrix& mat) : m_Data(mat) {
|
||||
Simplify();
|
||||
}
|
||||
@@ -12,12 +21,7 @@ Vect::Vect(const Matrix& mat) : m_Data(mat) {
|
||||
void Vect::Simplify() {
|
||||
Matrix mat = m_Data;
|
||||
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
|
||||
std::size_t i;
|
||||
for (i = 0; i < mat.GetRawCount(); i++) {
|
||||
if (!IsEqualZero(mat.at(i, j)))
|
||||
break;
|
||||
}
|
||||
if (i == mat.GetRawCount()) {
|
||||
if (IsColumnNull(mat, j)) {
|
||||
m_Data = mat.SubMatrix(0, 0, mat.GetRawCount(), j);
|
||||
return;
|
||||
}
|
||||
@@ -25,6 +29,10 @@ void Vect::Simplify() {
|
||||
m_Data = mat;
|
||||
}
|
||||
|
||||
Matrix Vect::GetVector(std::size_t index) const {
|
||||
return m_Data.SubMatrix(0, index, m_Data.GetRawCount(), 1);
|
||||
}
|
||||
|
||||
std::size_t Vect::GetCardinal() const {
|
||||
return m_Data.GetColumnCount();
|
||||
}
|
||||
@@ -65,26 +73,9 @@ Matrix Vect::GetLinearSystem() const {
|
||||
return vect;
|
||||
}
|
||||
|
||||
void Vect::Print() const {
|
||||
std::cout << "Espace vectoriel de dimension " << GetCardinal() << " de base :\n\n";
|
||||
for (std::size_t i = 0; i < m_Data.GetRawCount(); i++) {
|
||||
for (std::size_t j = 0; j < m_Data.GetColumnCount(); j++) {
|
||||
std::cout << "[ " << m_Data.at(i, j) << " ]\t";
|
||||
}
|
||||
std::cout << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t Vect::GetDimension() const {
|
||||
return m_Data.GetRawCount();
|
||||
}
|
||||
|
||||
VectAffine::VectAffine(const Vect& base, const Matrix& origine) :
|
||||
m_Base(base), m_Origin(origine.SubMatrix(0, 0, m_Base.GetDimension(), 1)) {}
|
||||
|
||||
void VectAffine::Print() const {
|
||||
std::cout << "\tEspace Affine :\n\n";
|
||||
m_Base.Print();
|
||||
std::cout << "\nOrigine :\n\n";
|
||||
m_Origin.Print();
|
||||
}
|
||||
m_Base(base), m_Origin(origine.SubMatrix(0, 0, m_Base.GetDimension(), 1)) {}
|
||||
@@ -15,10 +15,7 @@ class Vect {
|
||||
*/
|
||||
Vect(const Matrix& mat);
|
||||
|
||||
/**
|
||||
* \brief Affiche la base de l'espace vectoriel dans la console
|
||||
*/
|
||||
void Print() const;
|
||||
Matrix GetVector(std::size_t index) const;
|
||||
|
||||
std::size_t GetDimension() const;
|
||||
std::size_t GetCardinal() const;
|
||||
@@ -46,8 +43,6 @@ class VectAffine {
|
||||
public:
|
||||
VectAffine(const Vect& base, const Matrix& origin);
|
||||
|
||||
void Print() const;
|
||||
|
||||
const Vect& GetBase() const {
|
||||
return m_Base;
|
||||
}
|
||||
|
||||
31
src/main.cpp
31
src/main.cpp
@@ -1,6 +1,7 @@
|
||||
#include "Gauss.h"
|
||||
#include "IO.h"
|
||||
#include "Matrix.h"
|
||||
#include "NR.h"
|
||||
#include "Gauss.h"
|
||||
#include "Solver.h"
|
||||
#include <iostream>
|
||||
|
||||
@@ -19,8 +20,8 @@ void test() {
|
||||
mat.Print();
|
||||
// mat.Save("matrice4x4echelonne.mat"); */
|
||||
|
||||
Matrix mat2 {"matrice4x4.mat"};
|
||||
mat2.Print();
|
||||
Matrix mat2 = LoadMatrix("matrice4x4.mat");
|
||||
Print(mat2);
|
||||
|
||||
Solver solver {mat2};
|
||||
|
||||
@@ -28,35 +29,27 @@ void test() {
|
||||
Vect noyau = solver.Kernel();
|
||||
|
||||
std::cout << "\tImage :\n";
|
||||
image.Print();
|
||||
Print(image);
|
||||
std::cout << "Système :\n";
|
||||
image.GetLinearSystem().Print();
|
||||
Print(image.GetLinearSystem());
|
||||
std::cout << "\tNoyau :\n";
|
||||
noyau.Print();
|
||||
Print(noyau);
|
||||
std::cout << "Système :\n";
|
||||
noyau.GetLinearSystem().Print();
|
||||
Print(noyau.GetLinearSystem());
|
||||
|
||||
std::cout << "\n\n";
|
||||
solver.TriangularSystem().Print();
|
||||
Print(solver.TriangularSystem());
|
||||
}
|
||||
|
||||
void prompt() {
|
||||
std::cout << "Quelle est le nombre de lignes de votre matrice ?" << std::endl;
|
||||
std::size_t lignes;
|
||||
std::cin >> lignes;
|
||||
std::cout << "Quelle est le nombre de colonnes de votre matrice ?" << std::endl;
|
||||
std::size_t colonnes;
|
||||
std::cin >> colonnes;
|
||||
std::cout << "Rentrez les coefficients de la matrice" << std::endl;
|
||||
Matrix mat(lignes, colonnes);
|
||||
|
||||
mat.Insert();
|
||||
Matrix mat = InsertMatrix();
|
||||
|
||||
mat.Print();
|
||||
Print(mat);
|
||||
|
||||
Gauss::GaussJordan(mat, true, true);
|
||||
|
||||
mat.Print();
|
||||
Print(mat);
|
||||
}
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
#include "IO.h"
|
||||
#include "Solver.h"
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
@@ -16,7 +17,7 @@ int main() {
|
||||
|
||||
std::ifstream in {fileName};
|
||||
|
||||
Matrix mat {1, 1}, imageMat {1, 1}, noyauMat {1, 1};
|
||||
Matrix mat, imageMat, noyauMat;
|
||||
in >> mat >> imageMat >> noyauMat;
|
||||
|
||||
Vect image {imageMat};
|
||||
|
||||
Reference in New Issue
Block a user