refactor project
This commit is contained in:
75
src/Gauss.cpp
Normal file
75
src/Gauss.cpp
Normal file
@@ -0,0 +1,75 @@
|
|||||||
|
#include "Gauss.h"
|
||||||
|
|
||||||
|
#include "Matrix.h"
|
||||||
|
|
||||||
|
namespace Gauss {
|
||||||
|
|
||||||
|
static void GaussNonJordan(Matrix& mat, bool reduite) {
|
||||||
|
int r = -1;
|
||||||
|
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
|
||||||
|
std::size_t indice_ligne_maximum = r + 1;
|
||||||
|
|
||||||
|
// Recherche maximum
|
||||||
|
for (std::size_t i = r + 1; i < mat.GetRawCount(); i++) {
|
||||||
|
if (std::abs(mat.at(i, j)) > std::abs(mat.at(indice_ligne_maximum, j)))
|
||||||
|
indice_ligne_maximum = i;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Si A[k,j]≠0 alors (A[k,j] désigne la valeur de la ligne k et de la colonne j)
|
||||||
|
if (!IsEqualZero(mat.at(indice_ligne_maximum, j))) {
|
||||||
|
r++;
|
||||||
|
|
||||||
|
// Si k≠r alors
|
||||||
|
if (indice_ligne_maximum != r) {
|
||||||
|
// Échanger les lignes k et r (On place la ligne du pivot en position r)
|
||||||
|
for (std::size_t k = 0; k < mat.GetColumnCount(); k++) {
|
||||||
|
std::swap(mat.at(indice_ligne_maximum, k), mat.at(r, k));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pour i de 1 jusqu'à n (On simplifie les autres lignes)
|
||||||
|
for (std::size_t i = (reduite ? 0 : j); i < mat.GetRawCount(); i++) {
|
||||||
|
// Si i≠r alors
|
||||||
|
if (i != r) {
|
||||||
|
// Soustraire à la ligne i la ligne r multipliée par A[i,j] (de façon à
|
||||||
|
// annuler A[i,j])
|
||||||
|
for (int k = mat.GetColumnCount() - 1; k >= 0; k--) {
|
||||||
|
long double pivot = mat.at(r, j);
|
||||||
|
long double anul = mat.at(i, j);
|
||||||
|
mat.at(i, k) = mat.at(i, k) * pivot - mat.at(r, k) * anul;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void GaussJordan(Matrix& mat, bool reduite) {
|
||||||
|
GaussNonJordan(mat, reduite);
|
||||||
|
for (std::size_t i = 0; i < mat.GetRawCount(); i++) {
|
||||||
|
int k = -1;
|
||||||
|
for (std::size_t j = 0; j < mat.GetColumnCount(); j++) {
|
||||||
|
if (!IsEqualZero(mat.at(i, j))) {
|
||||||
|
k = j;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// ligne de 0
|
||||||
|
if (k == -1)
|
||||||
|
break;
|
||||||
|
// on divise la ligne par (i, k)
|
||||||
|
long double annul = mat.at(i, k);
|
||||||
|
for (int j = 0; j < mat.GetColumnCount(); j++) {
|
||||||
|
mat.at(i, j) /= annul;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void GaussJordan(Matrix& mat, bool reduite, bool normalise) {
|
||||||
|
if (normalise)
|
||||||
|
GaussJordan(mat, reduite);
|
||||||
|
else
|
||||||
|
GaussNonJordan(mat, reduite);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace Gauss
|
||||||
9
src/Gauss.h
Normal file
9
src/Gauss.h
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
class Matrix;
|
||||||
|
|
||||||
|
namespace Gauss {
|
||||||
|
|
||||||
|
void GaussJordan(Matrix& mat, bool reduite, bool normalise);
|
||||||
|
|
||||||
|
} // namespace Gauss
|
||||||
100
src/Matrix.cpp
100
src/Matrix.cpp
@@ -25,6 +25,7 @@ Matrix::~Matrix() {}
|
|||||||
Matrix Matrix::operator*(const Matrix& other) const {
|
Matrix Matrix::operator*(const Matrix& other) const {
|
||||||
if (m_Colonnes != other.m_Lignes) {
|
if (m_Colonnes != other.m_Lignes) {
|
||||||
std::cerr << "Mutiplication impossible car la dimensions des matrices est incompatible" << std::endl;
|
std::cerr << "Mutiplication impossible car la dimensions des matrices est incompatible" << std::endl;
|
||||||
|
return {1, 1, {0}};
|
||||||
}
|
}
|
||||||
|
|
||||||
Matrix result(m_Lignes, other.m_Colonnes);
|
Matrix result(m_Lignes, other.m_Colonnes);
|
||||||
@@ -53,13 +54,6 @@ void Matrix::Print() const {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void Matrix::PrintDebug() {
|
|
||||||
#ifndef NDEBUG
|
|
||||||
Print();
|
|
||||||
std::cout << "\n";
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
void Matrix::Insert() {
|
void Matrix::Insert() {
|
||||||
for (size_t i = 0; i < m_Lignes; ++i) {
|
for (size_t i = 0; i < m_Lignes; ++i) {
|
||||||
for (size_t j = 0; j < m_Colonnes; ++j) {
|
for (size_t j = 0; j < m_Colonnes; ++j) {
|
||||||
@@ -97,32 +91,14 @@ void Matrix::Transpose() {
|
|||||||
*this = result;
|
*this = result;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Matrix::Identity() {
|
|
||||||
assert(m_Lignes == m_Colonnes);
|
|
||||||
for (std::size_t i = 0; i < m_Lignes; i++) {
|
|
||||||
for (std::size_t j = i; j < m_Colonnes; j++) {
|
|
||||||
at(i, j) = i == j;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
Matrix Matrix::Identity(std::size_t taille) {
|
Matrix Matrix::Identity(std::size_t taille) {
|
||||||
Matrix id {taille, taille};
|
Matrix id {taille, taille};
|
||||||
id.Identity();
|
for (std::size_t i = 0; i < taille; i++) {
|
||||||
return id;
|
for (std::size_t j = i; j < taille; j++) {
|
||||||
}
|
id.at(i, j) = (i == j);
|
||||||
|
|
||||||
bool Matrix::IsInversed() const {
|
|
||||||
for (std::size_t i = 0; i < m_Lignes; ++i) {
|
|
||||||
std::size_t j;
|
|
||||||
for (j = 0; j < m_Colonnes; ++j) {
|
|
||||||
if (!IsEqualZero(at(i, j))) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return true;
|
return id;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Matrix::Augmenter(const Matrix& droite) {
|
void Matrix::Augmenter(const Matrix& droite) {
|
||||||
@@ -158,72 +134,6 @@ bool Matrix::operator==(const Matrix& other) const {
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
void Matrix::GaussNonJordan(bool reduite) {
|
|
||||||
int r = -1;
|
|
||||||
for (std::size_t j = 0; j < m_Colonnes; j++) {
|
|
||||||
std::size_t indice_ligne_maximum = r + 1;
|
|
||||||
|
|
||||||
// Recherche maximum
|
|
||||||
for (std::size_t i = r + 1; i < m_Lignes; i++) {
|
|
||||||
if (std::abs(at(i, j)) > std::abs(at(indice_ligne_maximum, j)))
|
|
||||||
indice_ligne_maximum = i;
|
|
||||||
}
|
|
||||||
|
|
||||||
// std::cout << "l'indice du maximum est : " << indice_ligne_maximum << "\n\n";
|
|
||||||
|
|
||||||
// Si A[k,j]≠0 alors (A[k,j] désigne la valeur de la ligne k et de la colonne j)
|
|
||||||
if (!IsEqualZero(at(indice_ligne_maximum, j))) {
|
|
||||||
r++;
|
|
||||||
|
|
||||||
// PrintDebug();
|
|
||||||
|
|
||||||
// Si k≠r alors
|
|
||||||
if (indice_ligne_maximum != r) {
|
|
||||||
// Échanger les lignes k et r (On place la ligne du pivot en position r)
|
|
||||||
// std::cout << "On échange les lignes " << indice_ligne_maximum << " et " << r << '\n';
|
|
||||||
for (std::size_t k = 0; k < m_Colonnes; k++) {
|
|
||||||
std::swap(at(indice_ligne_maximum, k), at(r, k));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Pour i de 1 jusqu'à n (On simplifie les autres lignes)
|
|
||||||
for (std::size_t i = (reduite ? 0 : j); i < m_Lignes; i++) {
|
|
||||||
// Si i≠r alors
|
|
||||||
if (i != r) {
|
|
||||||
// Soustraire à la ligne i la ligne r multipliée par A[i,j] (de façon à
|
|
||||||
// annuler A[i,j])
|
|
||||||
for (int k = m_Colonnes - 1; k >= 0; k--) {
|
|
||||||
long double pivot = at(r, j);
|
|
||||||
long double anul = at(i, j);
|
|
||||||
at(i, k) = at(i, k) * pivot - at(r, k) * anul;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void Matrix::GaussJordan(bool reduite) {
|
|
||||||
GaussNonJordan(reduite);
|
|
||||||
for (std::size_t i = 0; i < m_Lignes; i++) {
|
|
||||||
int k = -1;
|
|
||||||
for (std::size_t j = 0; j < m_Colonnes; j++) {
|
|
||||||
if (!IsEqualZero(at(i, j))) {
|
|
||||||
k = j;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// ligne de 0
|
|
||||||
if (k == -1)
|
|
||||||
break;
|
|
||||||
// on divise la ligne par (i, k)
|
|
||||||
long double annul = at(i, k);
|
|
||||||
for (int j = 0; j < m_Colonnes; j++) {
|
|
||||||
at(i, j) /= annul;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
long double& Matrix::operator[](std::size_t indice) {
|
long double& Matrix::operator[](std::size_t indice) {
|
||||||
return m_Data[indice];
|
return m_Data[indice];
|
||||||
}
|
}
|
||||||
|
|||||||
19
src/Matrix.h
19
src/Matrix.h
@@ -20,40 +20,25 @@ class Matrix {
|
|||||||
std::size_t GetRawCount() const;
|
std::size_t GetRawCount() const;
|
||||||
std::size_t GetColumnCount() const;
|
std::size_t GetColumnCount() const;
|
||||||
|
|
||||||
Matrix operator*(const Matrix& other) const;
|
void Insert();
|
||||||
|
|
||||||
void GaussNonJordan(bool reduite);
|
|
||||||
|
|
||||||
void GaussJordan(bool reduite);
|
|
||||||
|
|
||||||
void Print() const;
|
void Print() const;
|
||||||
|
|
||||||
void PrintDebug();
|
|
||||||
|
|
||||||
void Insert();
|
|
||||||
|
|
||||||
void Save(const std::string& fileName);
|
void Save(const std::string& fileName);
|
||||||
|
|
||||||
void Load(const std::string& filename);
|
void Load(const std::string& filename);
|
||||||
|
|
||||||
void Transpose();
|
void Transpose();
|
||||||
|
|
||||||
void Identity();
|
|
||||||
|
|
||||||
static Matrix Identity(std::size_t taille);
|
static Matrix Identity(std::size_t taille);
|
||||||
|
|
||||||
bool IsInversed() const;
|
|
||||||
|
|
||||||
void Augmenter(const Matrix& droite);
|
void Augmenter(const Matrix& droite);
|
||||||
|
|
||||||
Matrix SubMatrix(std::size_t origine_ligne, std::size_t origine_colonne, std::size_t ligne, std::size_t colonne) const;
|
Matrix SubMatrix(std::size_t origine_ligne, std::size_t origine_colonne, std::size_t ligne, std::size_t colonne) const;
|
||||||
|
|
||||||
bool operator==(const Matrix& other) const;
|
bool operator==(const Matrix& other) const;
|
||||||
|
Matrix operator*(const Matrix& other) const;
|
||||||
long double& operator[](std::size_t indice);
|
long double& operator[](std::size_t indice);
|
||||||
|
|
||||||
long double& at(std::size_t ligne, std::size_t colonne);
|
long double& at(std::size_t ligne, std::size_t colonne);
|
||||||
|
|
||||||
long double at(std::size_t ligne, std::size_t colonne) const;
|
long double at(std::size_t ligne, std::size_t colonne) const;
|
||||||
|
|
||||||
friend std::ostream& operator<<(std::ostream& stream, const Matrix& mat);
|
friend std::ostream& operator<<(std::ostream& stream, const Matrix& mat);
|
||||||
|
|||||||
@@ -1,11 +1,13 @@
|
|||||||
#include "Solver.h"
|
#include "Solver.h"
|
||||||
|
|
||||||
|
#include "Gauss.h"
|
||||||
|
|
||||||
Solver::Solver(const Matrix& mat) : m_Matrix(mat) {}
|
Solver::Solver(const Matrix& mat) : m_Matrix(mat) {}
|
||||||
|
|
||||||
Vect Solver::Image() const {
|
Vect Solver::Image() const {
|
||||||
Matrix result = m_Matrix;
|
Matrix result = m_Matrix;
|
||||||
result.Transpose();
|
result.Transpose();
|
||||||
result.GaussJordan(true);
|
Gauss::GaussJordan(result, true, true);
|
||||||
result.Transpose();
|
result.Transpose();
|
||||||
return {result};
|
return {result};
|
||||||
}
|
}
|
||||||
@@ -15,7 +17,7 @@ Vect Solver::Noyau() const {
|
|||||||
Matrix result = m_Matrix;
|
Matrix result = m_Matrix;
|
||||||
result.Transpose();
|
result.Transpose();
|
||||||
result.Augmenter(Matrix::Identity(result.GetRawCount()));
|
result.Augmenter(Matrix::Identity(result.GetRawCount()));
|
||||||
result.GaussJordan(true);
|
Gauss::GaussJordan(result, true, true);
|
||||||
result.Transpose();
|
result.Transpose();
|
||||||
|
|
||||||
// nombre de colonnes non nulles
|
// nombre de colonnes non nulles
|
||||||
@@ -27,7 +29,7 @@ Vect Solver::Noyau() const {
|
|||||||
|
|
||||||
VectAffine Solver::SystemeTriangulaire() const {
|
VectAffine Solver::SystemeTriangulaire() const {
|
||||||
Matrix mat = m_Matrix;
|
Matrix mat = m_Matrix;
|
||||||
mat.GaussJordan(true);
|
Gauss::GaussJordan(mat, true, true);
|
||||||
|
|
||||||
Solver solver {mat.SubMatrix(0, 0, mat.GetRawCount(), mat.GetColumnCount() - 1)};
|
Solver solver {mat.SubMatrix(0, 0, mat.GetRawCount(), mat.GetColumnCount() - 1)};
|
||||||
|
|
||||||
|
|||||||
@@ -1,5 +1,6 @@
|
|||||||
#include "Vect.h"
|
#include "Vect.h"
|
||||||
|
|
||||||
|
#include "Gauss.h"
|
||||||
#include "Solver.h"
|
#include "Solver.h"
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
@@ -45,7 +46,7 @@ bool Vect::operator==(const Vect& other) const {
|
|||||||
void Vect::AddVector(const Matrix& mat) {
|
void Vect::AddVector(const Matrix& mat) {
|
||||||
m_Data.Augmenter(mat);
|
m_Data.Augmenter(mat);
|
||||||
m_Data.Transpose();
|
m_Data.Transpose();
|
||||||
m_Data.GaussNonJordan(false);
|
Gauss::GaussJordan(m_Data, false, false);
|
||||||
m_Data.Transpose();
|
m_Data.Transpose();
|
||||||
Simplify();
|
Simplify();
|
||||||
}
|
}
|
||||||
@@ -68,7 +69,7 @@ void Vect::Print() const {
|
|||||||
std::cout << "Espace vectoriel de dimension " << GetCardinal() << " de base :\n\n";
|
std::cout << "Espace vectoriel de dimension " << GetCardinal() << " de base :\n\n";
|
||||||
for (std::size_t i = 0; i < m_Data.GetRawCount(); i++) {
|
for (std::size_t i = 0; i < m_Data.GetRawCount(); i++) {
|
||||||
for (std::size_t j = 0; j < m_Data.GetColumnCount(); j++) {
|
for (std::size_t j = 0; j < m_Data.GetColumnCount(); j++) {
|
||||||
printf("[ %u ]\t", static_cast<float>(m_Data.at(i, j)));
|
printf("[ %d ]\t", static_cast<float>(m_Data.at(i, j)));
|
||||||
}
|
}
|
||||||
std::cout << "\n";
|
std::cout << "\n";
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,3 +1,4 @@
|
|||||||
|
#include "Gauss.h"
|
||||||
#include "Solver.h"
|
#include "Solver.h"
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
|
|
||||||
@@ -52,7 +53,7 @@ void prompt() {
|
|||||||
|
|
||||||
mat.Print();
|
mat.Print();
|
||||||
|
|
||||||
mat.GaussJordan(true);
|
Gauss::GaussJordan(mat, true, true);
|
||||||
|
|
||||||
mat.Print();
|
mat.Print();
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,3 +1,4 @@
|
|||||||
|
#include "Gauss.h"
|
||||||
#include "Matrix.h"
|
#include "Matrix.h"
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
|
|
||||||
@@ -35,7 +36,7 @@ static const std::vector<Test> TEST_MATRICES = {
|
|||||||
|
|
||||||
void test() {
|
void test() {
|
||||||
for (Test test : TEST_MATRICES) {
|
for (Test test : TEST_MATRICES) {
|
||||||
test.mat.GaussJordan(true);
|
Gauss::GaussJordan(test.mat, true, true);
|
||||||
assert(test.mat == test.res);
|
assert(test.mat == test.res);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user