Files
GDMC-2024/networks/geometry/Point2D.py
2024-06-15 19:58:58 +02:00

253 lines
9.6 KiB
Python

from math import atan2, sqrt
from typing import List, Union
import numpy as np
from Enums import ROTATION
class Point2D:
def __init__(self, x: int, y: int):
self.x = x
self.y = y
self.coordinates = (self.x, self.y)
def copy(self):
return Point2D(self.x, self.y)
def __repr__(self):
return f"Point2D(x: {self.x}, y: {self.y})"
def __eq__(self, other):
if isinstance(other, Point2D):
return self.x == other.x and self.y == other.y
return False
def __add__(self, other):
if isinstance(other, np.ndarray) and other.shape == (2,):
return Point2D(self.x + other[0], self.y + other[1])
elif isinstance(other, Point2D):
return Point2D(self.x + other.x, self.y + other.y)
else:
raise TypeError(f"Unsupported type for addition: {type(other)}")
def __sub__(self, other):
if isinstance(other, np.ndarray) and other.shape == (2,):
return Point2D(self.x - other[0], self.y - other[1])
elif isinstance(other, Point2D):
return Point2D(self.x - other.x, self.y - other.y)
else:
raise TypeError(f"Unsupported type for subtraction: {type(other)}")
def is_in_triangle(self, xy0: "Point2D", xy1: "Point2D", xy2: "Point2D"):
"""Returns True is the point is in a triangle defined by 3 others points.
From: https://stackoverflow.com/questions/2049582/how-to-determine-if-a-point-is-in-a-2d-triangle
Args:
xy0 (Type[Point2D]): Point of the triangle.
xy1 (Type[Point2D]): Point of the triangle.
xy2 (Type[Point2D]): Point of the triangle.
Returns:
bool: False if the point is not inside the triangle.
>>> Point2D(0, 0).is_in_triangle(Point2D(10, 10), Point2D(-10, 20), Point2D(0, -20)))
True
"""
dx = self.x - xy0.x
dy = self.y - xy0.y
dx2 = xy2.x - xy0.x
dy2 = xy2.y - xy0.y
dx1 = xy1.x - xy0.x
dy1 = xy1.y - xy0.y
s_p = (dy2 * dx) - (dx2 * dy)
t_p = (dx1 * dy) - (dy1 * dx)
d = (dx1 * dy2) - (dy1 * dx2)
if d > 0:
return (s_p >= 0) and (t_p >= 0) and (s_p + t_p) <= d
else:
return (s_p <= 0) and (t_p <= 0) and (s_p + t_p) >= d
def nearest(self, points: List["Point2D"]) -> "Point2D":
"""Return the nearest point. If multiple nearest point, returns the first in the list.
Args:
points (List[Point2D]): List of the points to test.
Returns:
Point2D: The nearest point, and if multiple, the first in the list.
"""
return min(points, key=lambda point: self.distance(point))
def optimized_path(self, points: List["Point2D"]) -> List["Point2D"]:
"""Get an optimized ordered path starting from the current point.
From: https://stackoverflow.com/questions/45829155/sort-points-in-order-to-have-a-continuous-curve-using-python
Args:
points (List[Point2D]): List of 2d-points. Could contain the current point.
Returns:
List[Point2D]: Ordered list of 2d-points starting from the current point.
>>> Point2D(-2, -5).optimized_path([Point2D(0, 0), Point2D(10, 5), Point2D(1, 3)])
[Point2D(x: -2, y: -5), Point2D(x: 0, y: 0), Point2D(x: 1, y: 3), Point2D(x: 10, y: 5)]
"""
start = self
if start not in points:
points.append(start)
pass_by = points
path = [start]
pass_by.remove(start)
while pass_by:
nearest = min(pass_by, key=lambda point: point.distance(path[-1]))
path.append(nearest)
pass_by.remove(nearest)
return path
def sort_by_rotation(self, points: List["Point2D"], rotation: ROTATION = ROTATION.CLOCKWISE) -> List["Point2D"]:
"""Sort points in clockwise order, starting from current point.
From: https://stackoverflow.com/questions/58377015/counterclockwise-sorting-of-x-y-data
Args:
points (List[Point2D]): List of 2d-points. Current point can be included here.
rotation (ROTATION): Can be ROTATION.CLOCKWISE or ROTATION.COUNTERCLOCKWISE. Optional. Defaults to ROTATION.CLOCKWISE.
Returns:
List[Point2D]: List of 2d-points.
>>> Point2D(-10, -10).sort_by_rotation([Point2D(10, 10), Point2D(-10, 10), Point2D(10, -10)])
[Point2D(x: -10, y: -10), Point2D(x: 10, y: -10), Point2D(x: 10, y: 10), Point2D(x: -10, y: 10)]
"""
if self not in points:
points.append(self)
x, y = [], []
for i in range(len(points)):
x.append(points[i].x)
y.append(points[i].y)
x, y = np.array(x), np.array(y)
x0 = np.mean(x)
y0 = np.mean(y)
r = np.sqrt((x - x0) ** 2 + (y - y0) ** 2)
angles = np.where(
(y - y0) > 0,
np.arccos((x - x0) / r),
2 * np.pi - np.arccos((x - x0) / r),
)
mask = np.argsort(angles)
x_sorted = list(x[mask])
y_sorted = list(y[mask])
# Rearrange tuples to get the correct coordinates.
sorted_points = []
for i in range(len(points)):
j = 0
while (x_sorted[i] != points[j].x) and (y_sorted[i] != points[j].y):
j += 1
else:
sorted_points.append(Point2D(x_sorted[i], y_sorted[i]))
if rotation == ROTATION.CLOCKWISE:
sorted_points.reverse()
start_index = sorted_points.index(self)
return sorted_points[start_index:] + sorted_points[:start_index]
else:
start_index = sorted_points.index(self)
return sorted_points[start_index:] + sorted_points[:start_index]
def angle(self, xy1, xy2):
"""
Compute angle (in degrees). Corner in current point.
From: https://stackoverflow.com/questions/13226038/calculating-angle-between-two-vectors-in-python
Args:
xy0 (numpy.ndarray): Points in the form of [x,y].
xy1 (numpy.ndarray): Points in the form of [x,y].
xy2 (numpy.ndarray): Points in the form of [x,y].
Returns:
float: Angle negative for counterclockwise angle, angle positive
for counterclockwise angle.
>>> Point2D(0, 0).angle(Point2D(10, 10), Point2D(0, -20))
-135.0
"""
if xy2 is None:
xy2 = xy1.coordinate + np.array([1, 0])
v0 = np.array(xy1.coordinate) - np.array(self.coordinates)
v1 = np.array(xy2.coordinate) - np.array(self.coordinates)
angle = atan2(np.linalg.det([v0, v1]), np.dot(v0, v1))
return np.degrees(angle)
def round(self, ndigits: int = None) -> "Point2D":
self.x = round(self.x, ndigits)
self.y = round(self.y, ndigits)
self.coordinates = (self.x, self.y)
return self
def distance(self, point: "Point2D") -> float:
return sqrt((point.x - self.x) ** 2 + (point.y - self.y) ** 2)
# def slope(self, point: "Point2D") -> int:
# try:
# slope = (point.y - self.y) / (point.x - self.x)
# return slope
# except ZeroDivisionError:
# return float('inf')
# def is_between_slopes(self, lower_slope: int, upper_slope: int) -> bool:
# slope = self.slope(Point2D(0, 0))
# print("sole", slope, (slope <= upper_slope), (slope >= lower_slope),
# ((slope <= upper_slope) and (slope >= lower_slope)))
# return ((slope <= upper_slope) and (slope >= lower_slope))
# def is_between_lines(self, point_1: "Point2D", point_2: "Point2D", point_a: "Point2D", point_b: "Point2D") -> bool:
# slope_1, slope_a = point_1.slope(point_2), point_a.slope(point_b)
# lower_slope, upper_slope = min(slope_1, slope_a), max(slope_1, slope_a)
# print(self.is_between_slopes(lower_slope, upper_slope), "slope",
# lower_slope, upper_slope, self.slope(Point2D(0, 0)))
# print(self.x <= max(point_1.x, point_2.x, point_a.x, point_b.x), "x max")
# print(self.x >= min(point_1.x, point_2.x, point_a.x, point_b.x), "x min")
# print(self.y <= max(point_1.y, point_2.y, point_a.y, point_b.y), "y max")
# print(self.y >= min(point_1.y, point_2.y, point_a.y, point_b.y), "y min")
# return self.is_between_slopes(lower_slope, upper_slope) and self.x <= max(point_1.x, point_2.x, point_a.x, point_b.x) and self.x >= min(point_1.x, point_2.x, point_a.x, point_b.x) and self.y <= max(point_1.y, point_2.y, point_a.y, point_b.y) and self.y >= min(point_1.y, point_2.y, point_a.y, point_b.y)
@staticmethod
def collinear(p0: "Point2D", p1: "Point2D", p2: "Point2D") -> bool:
# https://stackoverflow.com/questions/9608148/python-script-to-determine-if-x-y-coordinates-are-colinear-getting-some-e
x1, y1 = p1.x - p0.x, p1.y - p0.y
x2, y2 = p2.x - p0.x, p2.y - p0.y
return abs(x1 * y2 - x2 * y1) < 1e-12
@staticmethod
def to_arrays(points: Union[List["Point2D"], "Point2D"]) -> Union[List[np.array], "Point2D"]:
if isinstance(points, list):
vectors = []
for point in points:
vectors.append(np.array(point.coordinates))
return vectors
else:
return np.array(points.coordinates)
@staticmethod
def from_arrays(vectors: Union[List[np.array], "Point2D"]) -> Union[List["Point2D"], "Point2D"]:
if isinstance(vectors, list):
points = []
for vector in vectors:
points.append(Point2D(vector[0], vector[1]))
return points
else:
return Point2D(vectors[0], vectors[1])