Files
GDMC-2024/networks/geometry/Polyline.py
2024-06-11 18:59:14 +02:00

106 lines
4.2 KiB
Python

from networks.geometry.Point2D import Point2D
from math import sqrt, inf
import numpy as np
class Polyline:
def __init__(self, points: list["Point2D"]):
"""A polyline with smooth corners, only composed of segments and circle arc.
Mathematics and algorithms behind this can be found here: https://cdr.lib.unc.edu/concern/dissertations/pz50gw814?locale=en, E2 Construction of arc roads from polylines, page 210.
Args:
points (List[Point2D]): List of 2d-points in order describing the polyline.
Raises:
ValueError: At least 4 points required.
>>> Polyline((Point2D(0, 0), Point2D(0, 10), Point2D(50, 10), Point2D(20, 20)))
"""
self.points = Point2D.to_vectors(points)
self.length_polyline = len(points)
if self.length_polyline < 4:
raise ValueError("The list must contain at least 4 elements.")
self.vectors = [None] * self.length_polyline
self.lengths = [None] * self.length_polyline
self.unit_vectors = [None] * self.length_polyline
self.tangente = [0] * self.length_polyline
self.alpha_radii = [None] * self.length_polyline
self._compute_requirements()
self._compute_alpha_radii()
self._alpha_assign(0, self.length_polyline-1)
def __repr__(self):
return str(self.alpha_radii)
def _alpha_assign(self, start_index: int, end_index: int):
"""
The alpha-assign procedure assigning radii based on a polyline.
"""
minimum_radius, minimum_index = inf, end_index
if start_index + 1 >= end_index:
return
alpha_b = min(
self.lengths[start_index] - self.alpha_radii[start_index], self.lengths[start_index + 1])
current_radius = max(self.tangente[start_index] * self.alpha_radii[start_index],
self.tangente[start_index + 1] * alpha_b) # Radis at initial segment
if current_radius < minimum_radius:
minimum_radius, minimum_index = current_radius, start_index
alpha_low, alpha_high = self.alpha_radii[start_index], alpha_b
for i in range(start_index + 1, end_index - 2): # Radii for internal segments
alpha_a, alpha_b, current_radius = self._radius_balance(i)
if current_radius < minimum_radius:
alpha_low, alpha_high = alpha_a, self.alpha_radii[end_index]
# Assign alphas at ends of selected segment
self.alpha_radii[minimum_index] = alpha_low
self.alpha_radii[minimum_index+1] = alpha_high
# Recur on lower segments
self._alpha_assign(start_index, minimum_index)
# Recur on higher segments
self._alpha_assign(minimum_index + 1, end_index)
def _radius_balance(self, i: int):
"""
Returns the radius that balances the radii on either end segement i.
"""
alpha_a = min(self.lengths[i-1], (self.lengths[i]*self.tangente[i+1]) /
(self.tangente[i] + self.tangente[i+1]))
alpha_b = min(self.lengths[i+1], self.lengths[i]-alpha_a)
return alpha_a, alpha_b, max(self.tangente[i]*alpha_a, self.tangente[i+1]*alpha_b)
def _compute_requirements(self):
# Between two points, there is only one segment
for j in range(self.length_polyline-1):
self.vectors[j] = self.points[j+1] - self.points[j]
self.lengths[j] = np.linalg.norm(self.vectors[j])
self.unit_vectors[j] = self.vectors[j]/self.lengths[j]
# print("\n\n", vectors, "\n\n", lengths, "\n\n", unit_vectors, "\n\n")
# Between two segments, there is only one angle
for k in range(1, self.length_polyline-1):
cross = np.dot(self.unit_vectors[k], self.unit_vectors[k-1])
self.tangente[k] = sqrt((1+cross)/(1-cross))
def _compute_alpha_radii(self):
self.alpha_radii[0] = 0
self.alpha_radii[self.length_polyline-1] = 0
for i in range(1, self.length_polyline-2):
self.alpha_radii[i] = min(self.lengths[i-1] - self.alpha_radii[i-1], (self.lengths[i]
* self.tangente[i+1])/(self.tangente[i]+self.tangente[i+1]))