116 lines
4.0 KiB
Python
116 lines
4.0 KiB
Python
from typing import List
|
|
from Enums import LINE_OVERLAP
|
|
from networks.geometry.Point3D import Point3D
|
|
|
|
|
|
class Segment3D:
|
|
def __init__(self, start: Point3D, end: Point3D):
|
|
self.start = start
|
|
self.end = end
|
|
self.output_points = []
|
|
|
|
def __repr__(self):
|
|
return str(self.output_points)
|
|
|
|
def segment(self, overlap: bool = False):
|
|
"""Calculate a segment between two points in 3D space. 3d Bresenham algorithm.
|
|
|
|
From: https://www.geeksforgeeks.org/bresenhams-algorithm-for-3-d-line-drawing/
|
|
|
|
Args:
|
|
overlap (bool, optional): If False, remove unnecessary points connecting to other points side by side, leaving only a diagonal connection. Defaults to False.
|
|
|
|
>>> Segment3D(Point3D(0, 0, 0), Point3D(10, 10, 15))
|
|
"""
|
|
start = self.start.copy()
|
|
end = self.end.copy()
|
|
self.output_points.append(start.copy())
|
|
dx = abs(self.end.x - self.start.x)
|
|
dy = abs(self.end.y - self.start.y)
|
|
dz = abs(self.end.z - self.start.z)
|
|
if end.x > start.x:
|
|
xs = 1
|
|
else:
|
|
xs = -1
|
|
if end.y > start.y:
|
|
ys = 1
|
|
else:
|
|
ys = -1
|
|
if end.z > start.z:
|
|
zs = 1
|
|
else:
|
|
zs = -1
|
|
|
|
# Driving axis is X-axis
|
|
if dx >= dy and dx >= dz:
|
|
p1 = 2 * dy - dx
|
|
p2 = 2 * dz - dx
|
|
while start.x != end.x:
|
|
start.x += xs
|
|
self.output_points.append(start.copy())
|
|
if p1 >= 0:
|
|
start.y += ys
|
|
if not overlap:
|
|
if self.output_points[-1].y != start.y:
|
|
self.output_points.append(start.copy())
|
|
p1 -= 2 * dx
|
|
if p2 >= 0:
|
|
start.z += zs
|
|
if not overlap:
|
|
if self.output_points[-1].z != start.z:
|
|
self.output_points.append(start.copy())
|
|
p2 -= 2 * dx
|
|
p1 += 2 * dy
|
|
p2 += 2 * dz
|
|
|
|
# Driving axis is Y-axis
|
|
elif dy >= dx and dy >= dz:
|
|
p1 = 2 * dx - dy
|
|
p2 = 2 * dz - dy
|
|
while start.y != end.y:
|
|
start.y += ys
|
|
self.output_points.append(start.copy())
|
|
if p1 >= 0:
|
|
start.x += xs
|
|
if not overlap:
|
|
if self.output_points[-1].x != start.x:
|
|
self.output_points.append(start.copy())
|
|
p1 -= 2 * dy
|
|
if p2 >= 0:
|
|
start.z += zs
|
|
if not overlap:
|
|
if self.output_points[-1].z != start.z:
|
|
self.output_points.append(start.copy())
|
|
p2 -= 2 * dy
|
|
p1 += 2 * dx
|
|
p2 += 2 * dz
|
|
|
|
# Driving axis is Z-axis
|
|
else:
|
|
p1 = 2 * dy - dz
|
|
p2 = 2 * dx - dz
|
|
while start.z != end.z:
|
|
start.z += zs
|
|
self.output_points.append(start.copy())
|
|
if p1 >= 0:
|
|
start.y += ys
|
|
if not overlap:
|
|
if self.output_points[-1].y != start.y:
|
|
self.output_points.append(start.copy())
|
|
p1 -= 2 * dz
|
|
if p2 >= 0:
|
|
start.x += xs
|
|
if not overlap:
|
|
if self.output_points[-1].x != start.x:
|
|
self.output_points.append(start.copy())
|
|
p2 -= 2 * dz
|
|
p1 += 2 * dy
|
|
p2 += 2 * dx
|
|
return self.output_points
|
|
|
|
def middle_point(self):
|
|
return (np.round((self.start.x + self.end.x) / 2.0).astype(int),
|
|
np.round((self.start.y + self.end.y) / 2.0).astype(int),
|
|
np.round((self.start.z + self.end.z) / 2.0).astype(int),
|
|
)
|