Files
GDMC-2024/networks/curve.py
2024-04-20 17:12:53 +02:00

43 lines
1.6 KiB
Python

import numpy as np
from scipy import interpolate
class Curve:
def __init__(self, target_points):
# list of points to [(x1, y1, z1), (...), ...]
self.target_points = target_points
self.computed_points = []
def compute_curve(self, resolution=40):
"""
Fill self.computed_points with a list of points that approximate a smooth curve following self.target_points.
https://stackoverflow.com/questions/18962175/spline-interpolation-coefficients-of-a-line-curve-in-3d-space
Args:
points (np.array): Points where the curve should pass in order.
resolution (int, optional): Total number of points to compute. Defaults to 40.
"""
# Remove duplicates. Curve can't intersect itself
points = tuple(map(tuple, np.array(self.target_points)))
points = sorted(set(points), key=points.index)
# Change coordinates structure to (x1, x2, x3, ...), (y1, y2, y3, ...) (z1, z2, z3, ...)
coords = np.array(points, dtype=np.float32)
x = coords[:, 0]
y = coords[:, 1]
z = coords[:, 2]
# Compute
tck, u = interpolate.splprep([x, y, z], s=2, k=2)
x_knots, y_knots, z_knots = interpolate.splev(tck[0], tck)
u_fine = np.linspace(0, 1, resolution)
x_fine, y_fine, z_fine = interpolate.splev(u_fine, tck)
x_rounded = np.round(x_fine).astype(int)
y_rounded = np.round(y_fine).astype(int)
z_rounded = np.round(z_fine).astype(int)
self.computed_points = [(x, y, z) for x, y, z in zip(
x_rounded, y_rounded, z_rounded)]