107 lines
3.7 KiB
Python
107 lines
3.7 KiB
Python
import numpy as np
|
|
import networks.Segment as segment
|
|
from scipy import interpolate
|
|
from math import sqrt
|
|
|
|
|
|
def curve(target_points, resolution=40):
|
|
"""
|
|
Returns a list of spaced points that approximate a smooth curve following target_points.
|
|
|
|
https://stackoverflow.com/questions/18962175/spline-interpolation-coefficients-of-a-line-curve-in-3d-space
|
|
"""
|
|
# Remove duplicates. Curve can't intersect itself
|
|
points = tuple(map(tuple, np.array(target_points)))
|
|
points = sorted(set(points), key=points.index)
|
|
|
|
# Change coordinates structure to (x1, x2, x3, ...), (y1, y2, y3, ...) (z1, z2, z3, ...)
|
|
coords = np.array(points, dtype=np.float32)
|
|
x = coords[:, 0]
|
|
y = coords[:, 1]
|
|
z = coords[:, 2]
|
|
|
|
# Compute
|
|
tck, u = interpolate.splprep([x, y, z], s=2, k=2)
|
|
x_knots, y_knots, z_knots = interpolate.splev(tck[0], tck)
|
|
u_fine = np.linspace(0, 1, resolution)
|
|
x_fine, y_fine, z_fine = interpolate.splev(u_fine, tck)
|
|
|
|
x_rounded = np.round(x_fine).astype(int)
|
|
y_rounded = np.round(y_fine).astype(int)
|
|
z_rounded = np.round(z_fine).astype(int)
|
|
|
|
return [(x, y, z) for x, y, z in zip(
|
|
x_rounded, y_rounded, z_rounded)]
|
|
|
|
|
|
def curvature(curve):
|
|
"""Get the normal vector at each point of the given points representing the direction in wich the curve is turning.
|
|
|
|
https://stackoverflow.com/questions/28269379/curve-curvature-in-numpy
|
|
|
|
Args:
|
|
curve (np.array): array of points representing the curve
|
|
|
|
Returns:
|
|
np.array: array of points representing the normal vector at each point in curve array
|
|
|
|
>>> curvature(np.array(([0, 0, 0], [0, 0, 1], [1, 0, 1])))
|
|
[[ 0.92387953 0. -0.38268343]
|
|
[ 0.70710678 0. -0.70710678]
|
|
[ 0.38268343 0. -0.92387953]]
|
|
"""
|
|
curve_points = np.array(curve)
|
|
dx_dt = np.gradient(curve_points[:, 0])
|
|
dy_dt = np.gradient(curve_points[:, 1])
|
|
dz_dt = np.gradient(curve_points[:, 2])
|
|
velocity = np.array([[dx_dt[i], dy_dt[i], dz_dt[i]]
|
|
for i in range(dx_dt.size)])
|
|
|
|
ds_dt = np.sqrt(dx_dt * dx_dt + dy_dt * dy_dt + dz_dt * dz_dt)
|
|
|
|
tangent = np.array([1/ds_dt]).transpose() * velocity
|
|
tangent_x = tangent[:, 0]
|
|
tangent_y = tangent[:, 1]
|
|
tangent_z = tangent[:, 2]
|
|
|
|
deriv_tangent_x = np.gradient(tangent_x)
|
|
deriv_tangent_y = np.gradient(tangent_y)
|
|
deriv_tangent_z = np.gradient(tangent_z)
|
|
|
|
dT_dt = np.array([[deriv_tangent_x[i], deriv_tangent_y[i], deriv_tangent_z[i]]
|
|
for i in range(deriv_tangent_x.size)])
|
|
length_dT_dt = np.sqrt(
|
|
deriv_tangent_x * deriv_tangent_x + deriv_tangent_y * deriv_tangent_y + deriv_tangent_z * deriv_tangent_z)
|
|
|
|
normal = np.array([1/length_dT_dt]).transpose() * dT_dt
|
|
return normal
|
|
|
|
|
|
def offset(curve, distance):
|
|
curvature_values = curvature(curve)
|
|
|
|
# Offsetting
|
|
offset_segments = [segment.parallel(
|
|
(curve[i], curve[i+1]), distance, curvature_values[i]) for i in range(len(curve) - 1)]
|
|
|
|
# Combining segments
|
|
combined_curve = []
|
|
combined_curve.append(np.round(offset_segments[0][0]).tolist())
|
|
for i in range(0, len(offset_segments)-1):
|
|
combined_curve.append(segment.middle_point(
|
|
offset_segments[i][1], offset_segments[i+1][0]))
|
|
combined_curve.append(np.round(offset_segments[-1][1]).tolist())
|
|
|
|
return combined_curve
|
|
|
|
|
|
def resolution_from_spacing(target_points, spacing_distance):
|
|
length = 0
|
|
for i in range(len(target_points) - 1):
|
|
length += sqrt(
|
|
((target_points[i][0] - target_points[i + 1][0]) ** 2)
|
|
+ ((target_points[i][1] - target_points[i + 1][1]) ** 2)
|
|
+ ((target_points[i][2] - target_points[i + 1][2]) ** 2)
|
|
)
|
|
return round(length / spacing_distance)
|