Files
GDMC-2024/world_maker/data_analysis.py
2024-06-16 02:18:16 +02:00

302 lines
11 KiB
Python

from world_maker.World import World
from PIL import Image, ImageFilter
import numpy as np
from scipy import ndimage
from world_maker.Skeleton import Skeleton
from typing import Union
from random import randint
import cv2
def get_data(world: World):
print("[Data Analysis] Generating data...")
heightmap, watermap, treemap = world.getData()
heightmap.save('./world_maker/data/heightmap.png')
watermap.save('./world_maker/data/watermap.png')
treemap.save('./world_maker/data/treemap.png')
print("[Data Analysis] Data generated.")
return heightmap, watermap, treemap
def handle_import_image(image: Union[str, Image]) -> Image:
if isinstance(image, str):
return Image.open(image)
return image
def filter_negative(image: Union[str, Image]) -> Image:
"""
Invert the colors of an image.
Args:
image (image): image to filter
"""
image = handle_import_image(image)
return Image.fromarray(np.invert(np.array(image)))
def filter_sobel(image: Union[str, Image]) -> Image:
"""
Edge detection algorithms from an image.
Args:
image (image): image to filter
"""
# Open the image
image = handle_import_image(image).convert('RGB')
img = np.array(image).astype(np.uint8)
# Apply gray scale
gray_img = np.round(
0.299 * img[:, :, 0] + 0.587 * img[:, :, 1] + 0.114 * img[:, :, 2]
).astype(np.uint8)
# Sobel Operator
h, w = gray_img.shape
# define filters
horizontal = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) # s2
vertical = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]]) # s1
# define images with 0s
newhorizontalImage = np.zeros((h, w))
newverticalImage = np.zeros((h, w))
newgradientImage = np.zeros((h, w))
# offset by 1
for i in range(1, h - 1):
for j in range(1, w - 1):
horizontalGrad = (
(horizontal[0, 0] * gray_img[i - 1, j - 1])
+ (horizontal[0, 1] * gray_img[i - 1, j])
+ (horizontal[0, 2] * gray_img[i - 1, j + 1])
+ (horizontal[1, 0] * gray_img[i, j - 1])
+ (horizontal[1, 1] * gray_img[i, j])
+ (horizontal[1, 2] * gray_img[i, j + 1])
+ (horizontal[2, 0] * gray_img[i + 1, j - 1])
+ (horizontal[2, 1] * gray_img[i + 1, j])
+ (horizontal[2, 2] * gray_img[i + 1, j + 1])
)
newhorizontalImage[i - 1, j - 1] = abs(horizontalGrad)
verticalGrad = (
(vertical[0, 0] * gray_img[i - 1, j - 1])
+ (vertical[0, 1] * gray_img[i - 1, j])
+ (vertical[0, 2] * gray_img[i - 1, j + 1])
+ (vertical[1, 0] * gray_img[i, j - 1])
+ (vertical[1, 1] * gray_img[i, j])
+ (vertical[1, 2] * gray_img[i, j + 1])
+ (vertical[2, 0] * gray_img[i + 1, j - 1])
+ (vertical[2, 1] * gray_img[i + 1, j])
+ (vertical[2, 2] * gray_img[i + 1, j + 1])
)
newverticalImage[i - 1, j - 1] = abs(verticalGrad)
# Edge Magnitude
mag = np.sqrt(pow(horizontalGrad, 2.0) + pow(verticalGrad, 2.0))
newgradientImage[i - 1, j - 1] = mag
image = Image.fromarray(newgradientImage)
image = image.convert("L")
return image
def filter_smooth(image: Union[str, Image], radius: int = 3):
"""
:param image: white and black image representing the derivative of the terrain (sobel), where black is flat and white is very steep.
:param radius: Radius of the Gaussian blur.
Returns:
image: black or white image, with black as flat areas to be skeletonized
"""
image = handle_import_image(image)
# image = image.filter(ImageFilter.SMOOTH_MORE)
# image = image.filter(ImageFilter.SMOOTH_MORE)
# image = image.filter(ImageFilter.SMOOTH_MORE)
image = image.convert('L')
image = image.filter(ImageFilter.GaussianBlur(radius))
array = np.array(image)
bool_array = array > 7
# bool_array = ndimage.binary_opening(bool_array, structure=np.ones((3,3)), iterations=1)
# bool_array = ndimage.binary_closing(bool_array, structure=np.ones((3,3)), iterations=1)
# bool_array = ndimage.binary_opening(bool_array, structure=np.ones((5,5)), iterations=1)
# bool_array = ndimage.binary_closing(bool_array, structure=np.ones((5,5)), iterations=1)
# bool_array = ndimage.binary_opening(bool_array, structure=np.ones((7,7)), iterations=1)
# bool_array = ndimage.binary_closing(bool_array, structure=np.ones((7,7)), iterations=1)
return Image.fromarray(bool_array)
def subtract_map(image: Union[str, Image], substractImage: Union[str, Image]) -> Image:
image = handle_import_image(image)
substractImage = handle_import_image(substractImage).convert('L')
array_heightmap = np.array(image)
array_substractImage = np.array(substractImage)
mask = array_substractImage == 255
array_heightmap[mask] = 0
return Image.fromarray(array_heightmap)
def group_map(image1: Union[str, Image], image2: Union[str, Image]) -> Image:
image1 = handle_import_image(image1).convert('L')
image2 = handle_import_image(image2).convert('L')
array1 = np.array(image1)
array2 = np.array(image2)
mask = array1 == 255
array2[mask] = 255
return Image.fromarray(array2)
def filter_smooth_array(array: np.ndarray, radius: int = 3) -> np.ndarray:
image = Image.fromarray(array)
smooth_image = filter_smooth(image, radius)
array = np.array(smooth_image)
return array
def filter_remove_details(image: Union[str, Image], n: int = 20) -> Image:
image = handle_import_image(image)
array = np.array(image)
for _ in range(n):
array = ndimage.binary_dilation(array, iterations=4)
array = ndimage.binary_erosion(array, iterations=5)
array = filter_smooth_array(array, 2)
array = ndimage.binary_erosion(array, iterations=3)
image = Image.fromarray(array)
return image
def highway_map() -> Image:
print("[Data Analysis] Generating highway map...")
smooth_sobel = filter_smooth("./world_maker/data/sobelmap.png", 1)
negative_smooth_sobel = filter_negative(smooth_sobel)
negative_smooth_sobel_water = subtract_map(
negative_smooth_sobel, './world_maker/data/watermap.png')
array_sobel_water = np.array(negative_smooth_sobel_water)
array_sobel_water = ndimage.binary_erosion(
array_sobel_water, iterations=12)
array_sobel_water = ndimage.binary_dilation(
array_sobel_water, iterations=5)
array_sobel_water = filter_smooth_array(array_sobel_water, 5)
array_sobel_water = ndimage.binary_erosion(
array_sobel_water, iterations=20)
array_sobel_water = filter_smooth_array(array_sobel_water, 6)
image = Image.fromarray(array_sobel_water)
image_no_details = filter_remove_details(image, 15)
image_no_details.save('./world_maker/data/highwaymap.png')
print("[Data Analysis] Highway map generated.")
return image_no_details
def create_volume(surface: np.ndarray, heightmap: np.ndarray, make_it_flat: bool = False) -> np.ndarray:
volume = np.full((len(surface), 255, len(surface[0])), False)
for z in range(len(surface)):
for x in range(len(surface[0])):
if not make_it_flat:
volume[x][heightmap[z][x]][z] = surface[z][x]
else:
volume[x][0][z] = surface[z][x]
return volume
def convert_2D_to_3D(image: Union[str, Image], make_it_flat: bool = False) -> np.ndarray:
image = handle_import_image(image)
heightmap = Image.open('./world_maker/data/heightmap.png').convert('L')
heightmap = np.array(heightmap)
surface = np.array(image)
volume = create_volume(surface, heightmap, make_it_flat)
return volume
def skeleton_highway_map(image: Union[str, Image] = './world_maker/data/highwaymap.png') -> Skeleton:
image_array = convert_2D_to_3D(image, True)
skeleton = Skeleton(image_array)
skeleton.parse_graph(True)
heightmap_skeleton = skeleton.map()
heightmap_skeleton.save('./world_maker/data/skeleton_highway.png')
skeleton.road_area('skeleton_highway_area.png', 10)
return skeleton
def skeleton_mountain_map(image: Union[str, Image] = './world_maker/data/mountain_map.png') -> Skeleton:
image_array = convert_2D_to_3D(image, True)
skeleton = Skeleton(image_array)
skeleton.parse_graph()
heightmap_skeleton = skeleton.map()
heightmap_skeleton.save('./world_maker/data/skeleton_mountain.png')
skeleton.road_area('skeleton_mountain_area.png', 3)
return skeleton
def smooth_sobel_water() -> Image:
watermap = handle_import_image("./world_maker/data/watermap.png")
watermap = filter_negative(
filter_remove_details(filter_negative(watermap), 5))
sobel = handle_import_image("./world_maker/data/sobelmap.png")
sobel = filter_remove_details(filter_smooth(sobel, 1), 2)
group = group_map(watermap, sobel)
group = filter_negative(group)
group.save('./world_maker/data/smooth_sobel_watermap.png')
return group
def detect_mountain(image: Union[str, Image] = './world_maker/data/sobelmap.png') -> Image:
image = handle_import_image(image)
sobel = np.array(image)
pixels = sobel.reshape((-1, 1))
pixels = np.float32(pixels)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
k = 3
_, labels, centers = cv2.kmeans(
pixels, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
centers = np.uint8(centers)
segmented_image = centers[labels.flatten()]
segmented_image = segmented_image.reshape(sobel.shape)
mountain = segmented_image == segmented_image.max()
contours, _ = cv2.findContours(mountain.astype(
np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
max_contour = max(contours, key=cv2.contourArea)
M = cv2.moments(max_contour)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
print(f"[Data Analysis] The center of the mountain is at ({cX}, {cY})")
return (cX, cY)
def rectangle_2D_to_3D(rectangle: list[tuple[tuple[int, int], tuple[int, int]]],
height_min: int = 6, height_max: int = 10) \
-> list[tuple[tuple[int, int, int], tuple[int, int, int]]]:
image = handle_import_image(
'./world_maker/data/heightmap.png').convert('L')
new_rectangle = []
for rect in rectangle:
start, end = rect
avg_height = 0
for x in range(start[0], end[0]):
for y in range(start[1], end[1]):
avg_height += image.getpixel((x, y))
avg_height = int(
avg_height / ((end[0] - start[0]) * (end[1] - start[1]))) + 1
new_rectangle.append(
((start[0], avg_height, start[1]), (end[0], avg_height + randint(height_min, height_max), end[1])))
return new_rectangle