Files
GDMC-2024/networks/geometry/curve.py
2024-05-26 16:26:32 +02:00

142 lines
4.8 KiB
Python

import numpy as np
import networks.geometry.segment as segment
from scipy import interpolate
from math import sqrt
def curve(target_points, resolution=40):
"""
Returns a list of spaced points that approximate a smooth curve following target_points.
https://stackoverflow.com/questions/18962175/spline-interpolation-coefficients-of-a-line-curve-in-3d-space
"""
# Remove duplicates. Curve can't intersect itself
points = tuple(map(tuple, np.array(target_points)))
points = sorted(set(points), key=points.index)
# Change coordinates structure to (x1, x2, x3, ...), (y1, y2, y3, ...) (z1, z2, z3, ...)
coords = np.array(points, dtype=np.float32)
x = coords[:, 0]
y = coords[:, 1]
z = coords[:, 2]
# Compute
tck, u = interpolate.splprep([x, y, z], s=3, k=2)
x_knots, y_knots, z_knots = interpolate.splev(tck[0], tck)
u_fine = np.linspace(0, 1, resolution)
x_fine, y_fine, z_fine = interpolate.splev(u_fine, tck)
x_rounded = np.round(x_fine).astype(int)
y_rounded = np.round(y_fine).astype(int)
z_rounded = np.round(z_fine).astype(int)
return [(x, y, z) for x, y, z in zip(
x_rounded, y_rounded, z_rounded)]
def curvature(curve):
"""Get the normal vector at each point of the given points representing the direction in wich the curve is turning.
https://stackoverflow.com/questions/28269379/curve-curvature-in-numpy
Args:
curve (np.array): array of points representing the curve
Returns:
np.array: array of points representing the normal vector at each point in curve array
>>> curvature(np.array(([0, 0, 0], [0, 0, 1], [1, 0, 1])))
[[ 0.92387953 0. -0.38268343]
[ 0.70710678 0. -0.70710678]
[ 0.38268343 0. -0.92387953]]
"""
curve_points = np.array(curve)
dx_dt = np.gradient(curve_points[:, 0])
dy_dt = np.gradient(curve_points[:, 1])
dz_dt = np.gradient(curve_points[:, 2])
velocity = np.array([[dx_dt[i], dy_dt[i], dz_dt[i]]
for i in range(dx_dt.size)])
ds_dt = np.sqrt(dx_dt * dx_dt + dy_dt * dy_dt + dz_dt * dz_dt)
tangent = np.array([1/ds_dt]).transpose() * velocity
tangent_x = tangent[:, 0]
tangent_y = tangent[:, 1]
tangent_z = tangent[:, 2]
deriv_tangent_x = np.gradient(tangent_x)
deriv_tangent_y = np.gradient(tangent_y)
deriv_tangent_z = np.gradient(tangent_z)
dT_dt = np.array([[deriv_tangent_x[i], deriv_tangent_y[i], deriv_tangent_z[i]]
for i in range(deriv_tangent_x.size)])
length_dT_dt = np.sqrt(
deriv_tangent_x * deriv_tangent_x + deriv_tangent_y * deriv_tangent_y + deriv_tangent_z * deriv_tangent_z + 0.0001)
normal = np.array([1/length_dT_dt]).transpose() * dT_dt
return normal
def offset(curve, distance, normals):
if len(normals) != len(curve):
raise ValueError(
'Number of normals and number of points in the curve do not match')
# Offsetting
offset_segments = [segment.parallel(
(curve[i], curve[i+1]), distance, normals[i]) for i in range(len(curve) - 1)]
# Combining segments
combined_curve = []
combined_curve.append(np.round(offset_segments[0][0]).tolist())
for i in range(0, len(offset_segments)-1):
combined_curve.append(segment.middle_point(
offset_segments[i][1], offset_segments[i+1][0]))
combined_curve.append(np.round(offset_segments[-1][1]).tolist())
return combined_curve
def resolution_distance(target_points, spacing_distance):
length = 0
for i in range(len(target_points) - 1):
length += sqrt(
((target_points[i][0] - target_points[i + 1][0]) ** 2)
+ ((target_points[i][1] - target_points[i + 1][1]) ** 2)
+ ((target_points[i][2] - target_points[i + 1][2]) ** 2)
)
return round(length / spacing_distance), length
def simplify_segments(points, epsilon):
if len(points) < 3:
return points
# Find the point with the maximum distance
max_distance = 0
max_index = 0
end_index = len(points) - 1
for i in range(1, end_index):
distance = get_distance(points[i], points[0])
if distance > max_distance:
max_distance = distance
max_index = i
simplified_points = []
# If the maximum distance is greater than epsilon, recursively simplify
if max_distance > epsilon:
rec_results1 = simplify_segments(points[:max_index+1], epsilon)
rec_results2 = simplify_segments(points[max_index:], epsilon)
# Combine the simplified sub-results
simplified_points.extend(rec_results1[:-1])
simplified_points.extend(rec_results2)
else:
# The maximum distance is less than epsilon, retain the endpoints
simplified_points.append(points[0])
simplified_points.append(points[end_index])
return simplified_points