import numpy as np from typing import List from math import atan2, sqrt from Enums import ROTATION class Point2D: def __init__(self, x: int, y: int): self.x = x self.y = y self.coordinate = (self.x, self.y) def copy(self): return Point2D(self.x, self.y) def __repr__(self): return f"Point2D(x: {self.x}, y: {self.y})" def __eq__(self, other): if isinstance(other, Point2D): return self.x == other.x and self.y == other.y return False def is_in_triangle(self, xy0: "Point2D", xy1: "Point2D", xy2: "Point2D"): """Returns True is the point is in a triangle defined by 3 others points. From: https://stackoverflow.com/questions/2049582/how-to-determine-if-a-point-is-in-a-2d-triangle#:~:text=A%20simple%20way%20is%20to,point%20is%20inside%20the%20triangle. Args: xy0 (Type[Point2D]): Point of the triangle. xy1 (Type[Point2D]): Point of the triangle. xy2 (Type[Point2D]): Point of the triangle. Returns: bool: False if the point is not inside the triangle. >>> Point2D(0, 0).is_in_triangle(Point2D(10, 10), Point2D(-10, 20), Point2D(0, -20))) True """ dx = self.x - xy0.x dy = self.y - xy0.y dx2 = xy2.x - xy0.x dy2 = xy2.y - xy0.y dx1 = xy1.x - xy0.x dy1 = xy1.y - xy0.y s_p = (dy2 * dx) - (dx2 * dy) t_p = (dx1 * dy) - (dy1 * dx) d = (dx1 * dy2) - (dy1 * dx2) if d > 0: return (s_p >= 0) and (t_p >= 0) and (s_p + t_p) <= d else: return (s_p <= 0) and (t_p <= 0) and (s_p + t_p) >= d def nearest(self, points: List["Point2D"]) -> "Point2D": """Return the nearest point. If multiple nearest point, returns the first in the list. Args: points (List[Point2D]): List of the points to test. Returns: Point2D: The nearest point, and if multiple, the first in the list. """ return min(points, key=lambda point: self.distance(point)) def optimized_path(self, points: List["Point2D"]) -> List["Point2D"]: """Get an optimized ordered path starting from the current point. From: https://stackoverflow.com/questions/45829155/sort-points-in-order-to-have-a-continuous-curve-using-python Args: points (List[Point2D]): List of 2d-points. Could contain the current point. Returns: List[Point2D]: Ordered list of 2d-points starting from the current point. >>> Point2D(-2, -5).optimized_path([Point2D(0, 0), Point2D(10, 5), Point2D(1, 3)]) [Point2D(x: -2, y: -5), Point2D(x: 0, y: 0), Point2D(x: 1, y: 3), Point2D(x: 10, y: 5)] """ start = self if start not in points: points.append(start) pass_by = points path = [start] pass_by.remove(start) while pass_by: nearest = min(pass_by, key=lambda point: point.distance(path[-1])) path.append(nearest) pass_by.remove(nearest) return path def sort_by_rotation(self, points: List["Point2D"], rotation: ROTATION = ROTATION.CLOCKWISE) -> List["Point2D"]: """Sort points in clockwise order, starting from current point. From: https://stackoverflow.com/questions/58377015/counterclockwise-sorting-of-x-y-data Args: points (List[Point2D]): List of 2d-points. Current point can be included here. rotation (ROTATION): Can be ROTATION.CLOCKWISE or ROTATION.COUNTERCLOCKWISE. Optional. Defaults to ROTATION.CLOCKWISE. Returns: List[Point2D]: List of 2d-points. >>> Point2D(-10, -10).sort_by_rotation([Point2D(10, 10), Point2D(-10, 10), Point2D(10, -10)]) [Point2D(x: -10, y: -10), Point2D(x: 10, y: -10), Point2D(x: 10, y: 10), Point2D(x: -10, y: 10)] """ if self not in points: points.append(self) x, y = [], [] for i in range(len(points)): x.append(points[i].x) y.append(points[i].y) x, y = np.array(x), np.array(y) x0 = np.mean(x) y0 = np.mean(y) r = np.sqrt((x - x0) ** 2 + (y - y0) ** 2) angles = np.where( (y - y0) > 0, np.arccos((x - x0) / r), 2 * np.pi - np.arccos((x - x0) / r), ) mask = np.argsort(angles) x_sorted = list(x[mask]) y_sorted = list(y[mask]) # Rearrange tuples to get the correct coordinates. sorted_points = [] for i in range(len(points)): j = 0 while (x_sorted[i] != points[j].x) and (y_sorted[i] != points[j].y): j += 1 else: sorted_points.append(Point2D(x_sorted[i], y_sorted[i])) if rotation == ROTATION.CLOCKWISE: sorted_points.reverse() start_index = sorted_points.index(self) return sorted_points[start_index:] + sorted_points[:start_index] else: start_index = sorted_points.index(self) return sorted_points[start_index:] + sorted_points[:start_index] def angle(self, xy1, xy2): """ Compute angle (in degrees). Corner in current point. From: https://stackoverflow.com/questions/13226038/calculating-angle-between-two-vectors-in-python Args: xy0 (numpy.ndarray): Points in the form of [x,y]. xy1 (numpy.ndarray): Points in the form of [x,y]. xy2 (numpy.ndarray): Points in the form of [x,y]. Returns: float: Angle negative for counterclockwise angle, angle positive for counterclockwise angle. >>> Point2D(0, 0).angle(Point2D(10, 10), Point2D(0, -20)) -135.0 """ if xy2 is None: xy2 = xy1.coordinate + np.array([1, 0]) v0 = np.array(xy1.coordinate) - np.array(self.coordinate) v1 = np.array(xy2.coordinate) - np.array(self.coordinate) angle = atan2(np.linalg.det([v0, v1]), np.dot(v0, v1)) return np.degrees(angle) def round(self, ndigits: int = None) -> "Point2D": self.x = round(self.x, ndigits) self.y = round(self.y, ndigits) self.coordinate = (self.x, self.y) return self def distance(self, point: "Point2D") -> int: return sqrt((point.x - self.x) ** 2 + (point.y - self.y) ** 2) @staticmethod def to_vectors(points: List["Point3D"]) -> List[np.array]: vectors = [] for point in points: vectors.append(np.array(point.coordinate)) if (len(vectors) == 1): return vectors[0] else: return vectors