from Metro_Line import * from math import pi, cos, sin, sqrt, atan2, inf from pygame import Surface import pygame from metro.Metro_Line import Position def cubic_bezier(time: float, join1: Position, control_point1: Position, control_point2: Position, join2: Position) -> Position: """ Calculate the position of a point on a cubic Bézier curve at a given time Formula used : B(t) = (1-t)^3 * P0 + 3(1-t)^2 * t * P1 + 3(1-t) * t^2 * P2 + t^3 * P3 :param time: The time at which to calculate the position :param join1: The first join point of the curve :param control_point1: The first control point of the curve :param control_point2: The second control point of the curve :param join2: The second join point of the curve :return: The position of the point on the curve at the given time """ return (join1 * ((1 - time) ** 3) + control_point1 * 3 * ((1 - time) ** 2) * time + control_point2 * 3 * (1 - time) * (time ** 2) + join2 * (time ** 3)) def cubic_bezier_derivative(time: float, join1: Position, control_point1: Position, control_point2: Position, join2: Position) -> Position: """ Calculate the first derivative of a cubic Bézier curve at a given time Formula used : B'(t) = 3(1-t)^2 * (P1 - P0) + 6(1-t) * t * (P2 - P1) + 3t^2 * (P3 - P2) :param time: The time at which to calculate the derivative :param join1: The first join point of the curve :param control_point1: The first control point of the curve :param control_point2: The second control point of the curve :param join2: The second join point of the curve :return: The derivative of the curve at the given time """ return ((control_point1 - join1) * 3 * ((1 - time) ** 2) + (control_point2 - control_point1) * 6 * (1 - time) * time + (join2 - control_point2) * 3 * (time ** 2)) def cubic_bezier_second_derivative(time: float, join1: Position, control_point1: Position, control_point2: Position, join2: Position) -> Position: """ Calculate the second derivative of a cubic Bézier curve at a given time Formula used : B''(t) = 6(1-t) * (P2 - 2P1 + P0) + 6t * (P3 - 2P2 + P1) :param time: The time at which to calculate the second derivative :param join1: The first join point of the curve :param control_point1: The first control point of the curve :param control_point2: The second control point of the curve :param join2: The second join point of the curve :return: The second derivative of the curve at the given time """ return ((control_point2 - control_point1 * 2 + join1) * 6 * (1 - time) + (join2 - control_point2 * 2 + control_point1) * 6 * time) def bezier_curve(control_points, num_points) -> tuple[list[Position], list[Position], list[Position]]: """ Generate a Bézier curve from a list of control points :param control_points: The control points of the curve :param num_points: The number of points to generate :return: A tuple containing the points of the curve, the derivative of the curve, and the second derivative of the curve """ points = [] derivative = [] second_derivative = [] for t in range(num_points + 1): points.append(cubic_bezier(t / num_points, *control_points)) derivative.append(cubic_bezier_derivative(t / num_points, *control_points)) second_derivative.append(cubic_bezier_second_derivative(t / num_points, *control_points)) return points, derivative, second_derivative def osculating_circle(points: list[Position], derivative: list[Position], second_derivative: list[Position]) \ -> list[tuple[int, Position]]: """ Calculate the osculating circle at each point of a curve An osculating circle is the circle that best approximates the curve at a given point Source : https://en.wikipedia.org/wiki/Osculating_circle :param points: The points of the curve :param derivative: The derivative of the curve :param second_derivative: The second derivative of the curve :return: A list of tuples, each containing the radius and center of each osculating circle """ circle = [] for i in range(len(points)): curvature = (abs(derivative[i].x * second_derivative[i].y - derivative[i].y * second_derivative[i].x) / ((derivative[i].x ** 2 + derivative[i].y ** 2) ** 1.5)) if curvature != 0: radius = 1 / curvature normal = derivative[i].norm() cross_product = derivative[i].x * second_derivative[i].y - derivative[i].y * second_derivative[i].x if cross_product > 0: center = points[i] + Position(-derivative[i].y * radius / normal, derivative[i].x * radius / normal) else: center = points[i] + Position(derivative[i].y * radius / normal, -derivative[i].x * radius / normal) circle.append((int(radius), center)) return circle def merge_similar_circles(circles: list[tuple[int, Position]], radius_threshold: float, center_threshold: float) \ -> list[tuple[int, Position]]: """ Merge similar osculating circles :param circles: The osculating circles to merge :param radius_threshold: The maximum difference in radius for two circles to be considered similar :param center_threshold: The maximum distance between the centers of two circles to be considered similar :return: The merged osculating circles """ merged_circles = [] i = 0 while i < len(circles) - 1: radius1, center1 = circles[i] radius2, center2 = circles[i + 1] if abs(radius1 - radius2) <= radius_threshold and center1.distance_to(center2) <= center_threshold: merged_radius = (radius1 + radius2) // 2 merged_center = Position((center1.x + center2.x) // 2, (center1.y + center2.y) // 2) merged_circles.append((merged_radius, merged_center)) i += 2 else: merged_circles.append(circles[i]) i += 1 if i < len(circles): merged_circles.append(circles[i]) if len(merged_circles) == len(circles): return merged_circles else: return merge_similar_circles(merged_circles, radius_threshold, center_threshold) def circle_intersection(circle1: tuple[int, Position], circle2: tuple[int, Position]) -> list[Position]: distance = circle1[1].distance_to(circle2[1]) if (distance > circle1[0] + circle2[0] or distance < abs(circle1[0] - circle2[0]) or (distance == 0 and circle1[0] == circle2[0])): return [] distance_line_circle = (circle1[0] ** 2 - circle2[0] ** 2 + distance ** 2) / (2 * distance) distance_line_intersec_point = sqrt(circle1[0] ** 2 - distance_line_circle ** 2) p = circle1[1] + (circle2[1] - circle1[1]) * distance_line_circle / distance return [Position(int(p.x + distance_line_intersec_point * (circle2[1].y - circle1[1].y) / distance), int(p.y - distance_line_intersec_point * (circle2[1].x - circle1[1].x) / distance)), Position(int(p.x - distance_line_intersec_point * (circle2[1].y - circle1[1].y) / distance), int(p.y + distance_line_intersec_point * (circle2[1].x - circle1[1].x) / distance))] def closest_to_curve(points: list[Position], curve_points: list[Position]) -> Position: closest_point = Position() distance = inf for point in points: for curve_point in curve_points: distance_point_curve = point.distance_to(curve_point) if distance_point_curve < distance: distance = distance_point_curve closest_point = point return closest_point def midpoint_circle_segment(circle: tuple[int, Position], start_point: Position, end_point: Position, curve_points: list[Position]) -> list[ Position]: points = [] start_angle = circle[1].angle_to(start_point) end_angle = circle[1].angle_to(end_point) if start_angle < 0: start_angle += 2 * pi if end_angle < 0: end_angle += 2 * pi if start_angle > end_angle: start_angle, end_angle = end_angle, start_angle middle_angle = (start_angle+end_angle)/2 middle_point = circle[1] + Position(int(circle[0]*cos(middle_angle)), -int(circle[0]*sin(middle_angle))) is_outside_point = closest_to_curve([middle_point, circle[1]], curve_points) == middle_point x0, y0 = circle[1].x, circle[1].y x = circle[0] y = 0 err = 0 while x >= y: for (x1, y1) in [(x0 + x, y0 + y), (x0 + y, y0 + x), (x0 - y, y0 + x), (x0 - x, y0 + y), (x0 - x, y0 - y), (x0 - y, y0 - x), (x0 + y, y0 - x), (x0 + x, y0 - y)]: angle = atan2(y0 - y1, x1 - x0) if angle < 0: angle += 2*pi if is_outside_point: if start_angle <= angle <= end_angle: points.append(Position(int(x1), int(y1))) else: if angle <= start_angle or end_angle <= angle: points.append(Position(int(x1), int(y1))) if err <= 0: y += 1 err += 2 * y + 1 if err > 0: x -= 1 err -= 2 * x + 1 return points def calculate_control_points(station, next_station, curve_factor) -> tuple[Position, Position]: """ Calculate the control points for a Bézier curve between two stations :param station: The first station :param next_station: The second station :param curve_factor: The factor to multiply the distance between stations to create the control points :return: A tuple containing the control points for the curve """ distance = station.distance_to(next_station) control_point_pos = station.pos + Position(cos(station.orientation) * distance * curve_factor, -sin(station.orientation) * distance * curve_factor) control_point_next_pos = next_station.pos + Position( cos(next_station.orientation + pi) * distance * curve_factor, - sin(next_station.orientation + pi) * distance * curve_factor) return control_point_pos, control_point_next_pos def metro_line_osculating_circles(metro: Metro_Line, curve_factor: float = 0.5, num_points_factor: float = 1 / 20) -> ( tuple)[list[tuple[int, Position]], list[Position]]: """ Calculate the osculating circles of a metro line :param metro: The metro line to calculate the osculating circles of :param curve_factor: How much the control points should be offset from the stations :param num_points_factor: How many points to generate for each segment of the curve :return: A tuple containing the osculating circles and the points of the metro line curve """ print(f"[METRO LINE] Calculating osculating circles of the metro line {metro.name}") circles = [] points_list = [] for i in range(len(metro.stations) - 1): print(f"[METRO LINE] Calculating between {metro.stations[i].name} and {metro.stations[i].next_station.name}") station = metro.stations[i] distance = station.distance_to(station.next_station) control_point_pos, control_point_next_pos = calculate_control_points(station, station.next_station, curve_factor) points, derivatives, second_derivatives = bezier_curve( [station.pos, control_point_pos, control_point_next_pos, station.next_station.pos], int(distance * num_points_factor)) osculating_circles = osculating_circle(points, derivatives, second_derivatives) merged_circles = merge_similar_circles(osculating_circles, 50, 50) print( f"[METRO LINE] {len(osculating_circles) - len(merged_circles)} out of {len(osculating_circles)} circles deleted !") circles.extend(merged_circles) points_list.extend(points) print(f"[METRO LINE] Osculating circles done") return circles, points_list # --- DRAW PART --- def draw_osculating_circle(circle: list[tuple[int, Position]], surface: Surface): """ :param circle: The osculating circles to draw :param surface: The surface on which to draw the circles """ for radius, center in circle: pygame.draw.circle(surface, (255, 0, 0), (center.x, center.y), int(radius), 1) pygame.draw.circle(surface, (0, 0, 255), (center.x, center.y), 10) def draw_station(station: Station, surface: Surface): """ :param station: The station to draw :param surface: The surface on which to draw the station """ pygame.draw.circle(surface, (255, 255, 255), (station.pos.x, station.pos.y), 10) def draw_points(points: list[Position], surface): """ :param points: The points to draw :param surface: The surface on which to draw the points """ for point in points: pygame.draw.circle(surface, (40, 255, 40), (point.x, point.y), 5) def draw_point(point: Position, surface): pygame.draw.circle(surface, (40, 255, 40), (point.x, point.y), 5) def draw_pixels(points: list[Position], surface): for point in points: surface.set_at((point.x, point.y), (0, 255, 255)) def draw_metro_line(metro: Metro_Line, surface: Surface, show_points: bool = True): """ :param metro: The metro line to draw :param surface: The surface on which to draw the metro line :param show_points: Whether to show the points of the curve """ for i in range(len(metro.stations) - 1): station = metro.stations[i] draw_station(station, surface) draw_station(station.next_station, surface) circles, points = metro_line_osculating_circles(metro) draw_osculating_circle(circles, surface) for i in range(1, len(circles) - 1): intersect_point_circle_before = closest_to_curve(circle_intersection(circles[i - 1], circles[i]), points) intersect_point_circle_after = closest_to_curve(circle_intersection(circles[i], circles[i + 1]), points) if intersect_point_circle_before == Position(): continue intersect_point_circle_before = circles[i - 1][1] else: draw_point(intersect_point_circle_before, surface) if intersect_point_circle_after == Position(): continue intersect_point_circle_after = circles[i + 1][1] else: draw_point(intersect_point_circle_after, surface) points_midpoint = midpoint_circle_segment(circles[i], intersect_point_circle_before, intersect_point_circle_after, points) draw_pixels(points_midpoint, surface) if len(points) != 0: intersect_point_circle_before = points[0] intersect_point_circle_after = closest_to_curve(circle_intersection(circles[0], circles[1]), points) points_midpoint = midpoint_circle_segment(circles[0], intersect_point_circle_before, intersect_point_circle_after, points) draw_pixels(points_midpoint, surface) intersect_point_circle_before = points[-1] intersect_point_circle_after = closest_to_curve(circle_intersection(circles[-1], circles[-2]), points) points_midpoint = midpoint_circle_segment(circles[-1], intersect_point_circle_before, intersect_point_circle_after, points) draw_pixels(points_midpoint, surface) def interface(): """ Interface for creating a metro line Control : - Up arrow ↑ Create a station facing north - Down arrow ↓ Create a station facing south - Left arrow ← Create a station facing west - Right arrow → Create a station facing east """ metro = Metro_Line('A') surface = pygame.display.set_mode((1000, 1000)) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() return if event.type == pygame.KEYDOWN: angle = 0 if event.key == pygame.K_UP: angle = pi / 2 elif event.key == pygame.K_DOWN: angle = -pi / 2 elif event.key == pygame.K_LEFT: angle = pi x, y = pygame.mouse.get_pos() metro.add_station(Station(Position(x, y), angle, str(len(metro.stations)))) draw_metro_line(metro, surface) pygame.display.flip() def main(): interface() if __name__ == "__main__": main()