from typing import List, Union import numpy as np from Enums import LINE_OVERLAP, LINE_THICKNESS_MODE from networks.geometry.Point2D import Point2D class Segment2D: def __init__(self, start: Point2D, end: Point2D): self.start = start self.end = end self.points: List[Point2D] = [] self.points_thick: List[Point2D] = [] self.thickness = None def __repr__(self): return str(f"Segment2D(start: {self.start}, end: {self.end}, points: {self.points})") def segment(self, start: Point2D = None, end: Point2D = None, overlap: LINE_OVERLAP = LINE_OVERLAP.NONE, _is_computing_thickness: bool = False) -> Union[List[Point2D], None]: """Modified Bresenham draw (line) with optional overlap. From: https://github.com/ArminJo/Arduino-BlueDisplay/blob/master/src/LocalGUI/ThickLine.hpp Args: start (Point2D): Start point of the segment. end (Point2D): End point of the segment. overlap (LINE_OVERLAP): Overlap draws additional pixel when changing minor direction. For standard bresenham overlap, choose LINE_OVERLAP_NONE. Can also be LINE_OVERLAP_MAJOR or LINE_OVERLAP_MINOR. _is_computing_thickness (bool, optionnal): Used by segment_thick. Don't touch. >>> Segment2D(Point2D(0, 0), Point2D(10, 15)) """ if start is None or end is None: start = self.start.copy() end = self.end.copy() else: start = start.copy() end = end.copy() # Direction delta_x = end.x - start.x delta_y = end.y - start.y if (delta_x < 0): delta_x = -delta_x step_x = -1 else: step_x = +1 if (delta_y < 0): delta_y = -delta_y step_y = -1 else: step_y = +1 delta_2x = 2*delta_x delta_2y = 2*delta_y self._add_points(start, _is_computing_thickness) if (delta_x > delta_y): error = delta_2y - delta_x while (start.x != end.x): start.x += step_x if (error >= 0): if (overlap == LINE_OVERLAP.MAJOR): self._add_points(start, _is_computing_thickness) start.y += step_y if (overlap == LINE_OVERLAP.MINOR): self._add_points( Point2D(start.copy().x - step_x, start.copy().y), _is_computing_thickness) error -= delta_2x error += delta_2y self._add_points(start, _is_computing_thickness) else: error = delta_2x - delta_y while (start.y != end.y): start.y += step_y if (error >= 0): if (overlap == LINE_OVERLAP.MAJOR): self._add_points(start, _is_computing_thickness) start.x += step_x if (overlap == LINE_OVERLAP.MINOR): self._add_points( Point2D(start.copy().x, start.copy().y - step_y), _is_computing_thickness) error -= delta_2y error += delta_2x self._add_points(start, _is_computing_thickness) if not _is_computing_thickness: return self.points return None def segment_thick(self, thickness: int, thickness_mode: LINE_THICKNESS_MODE) -> List[Point2D]: """Bresenham with thickness. From: https://github.com/ArminJo/Arduino-BlueDisplay/blob/master/src/LocalGUI/ThickLine.hpp Murphy's Modified Bresenham algorithm : http://zoo.co.uk/murphy/thickline/index.html Args: start (Point2D): Start point of the segment. end (Point2D): End point of the segment. thickness (int): Total width of the surface. Placement relative to the original segment depends on thickness_mode. thickness_mode (LINE_THICKNESS_MODE): Can be one of LINE_THICKNESS_MIDDLE, LINE_THICKNESS_DRAW_CLOCKWISE, LINE_THICKNESS_DRAW_COUNTERCLOCKWISE. >>> self.compute_thick_segment(self.start, self.end, self.thickness, self.thickness_mode) """ start = self.start.copy() end = self.end.copy() delta_y = end.x - start.x delta_x = end.y - start.y swap = True if (delta_x < 0): delta_x = -delta_x step_x = -1 swap = not swap else: step_x = +1 if (delta_y < 0): delta_y = -delta_y step_y = -1 swap = not swap else: step_y = +1 delta_2x = 2 * delta_x delta_2y = 2 * delta_y draw_start_adjust_count = int(thickness / 2) if (thickness_mode == LINE_THICKNESS_MODE.DRAW_COUNTERCLOCKWISE): draw_start_adjust_count = thickness - 1 elif (thickness_mode == LINE_THICKNESS_MODE.DRAW_CLOCKWISE): draw_start_adjust_count = 0 if (delta_x >= delta_y): if swap: draw_start_adjust_count = ( thickness - 1) - draw_start_adjust_count step_y = -step_y else: step_x = -step_x error = delta_2y - delta_x for i in range(draw_start_adjust_count, 0, -1): start.x -= step_x end.x -= step_x if error >= 0: start.y -= step_y end.y -= step_y error -= delta_2x error += delta_2x self.segment( start, end, overlap=LINE_OVERLAP.NONE, _is_computing_thickness=True) error = delta_2x - delta_x for i in range(thickness, 1, -1): start.x += step_x end.x += step_x overlap = LINE_OVERLAP.NONE if (error >= 0): start.y += step_y end.y += step_y error -= delta_2x overlap = LINE_OVERLAP.MAJOR error += delta_2y self.segment( start, end, overlap=overlap, _is_computing_thickness=True) else: if swap: step_x = -step_x else: draw_start_adjust_count = ( thickness - 1) - draw_start_adjust_count step_y = -step_y error = delta_2x - delta_y for i in range(draw_start_adjust_count, 0, -1): start.y -= step_y end.y -= step_y if (error >= 0): start.x -= step_x end.x -= step_x error -= delta_2y error += delta_2x self.segment( start, end, overlap=LINE_OVERLAP.NONE, _is_computing_thickness=True) error = delta_2x - delta_y for i in range(thickness, 1, -1): start.y += step_y end.y += step_y overlap = LINE_OVERLAP.NONE if (error >= 0): start.x += step_x end.x += step_x error -= delta_2y overlap = LINE_OVERLAP.MAJOR error += delta_2x self.segment( start, end, overlap=overlap, _is_computing_thickness=True) return self.points_thick def perpendicular(self, distance: int) -> List[Point2D]: """Compute perpendicular points from both side of the segment placed at start level. Args: distance (int): Distance bewteen the start point and the perpendicular. Returns: List[Point2D]: Two points. First one positioned on the counterclockwise side of the segment, oriented from start to end (meaning left). >>> Segment2D(Point2D(0, 0), Point2D(10, 10)).perpendicular(10) (Point2D(x: -4, y: 4), Point2D(x: 4, y: -4)) """ delta = self.start.distance(self.end) dx = (self.start.x - self.end.x) / delta dy = (self.start.y - self.end.y) / delta x3 = self.start.x + (distance / 2) * dy y3 = self.start.y - (distance / 2) * dx x4 = self.start.x - (distance / 2) * dy y4 = self.start.y + (distance / 2) * dx return Point2D(x3, y3).round(), Point2D(x4, y4).round() def middle_point(self): return (np.round((self.start.x + self.end.x) / 2.0).astype(int), np.round((self.start.y + self.end.y) / 2.0).astype(int), ) def _add_points(self, points, is_computing_thickness): if is_computing_thickness: self.points_thick.append(points.copy()) else: self.points.append(points.copy())