from math import sqrt from typing import List, Union from networks.geometry.Point2D import Point2D import numpy as np class Point3D: def __init__(self, x: int, y: int, z: int): self.x = x self.y = y self.z = z self.coordinates = (x, y, z) def copy(self): return Point3D(self.x, self.y, self.z) def __repr__(self): return f"Point3D(x: {self.x}, y: {self.y}, z: {self.z})" def __eq__(self, other): if isinstance(other, Point3D): return self.x == other.x and self.y == other.y and self.z == other.z def nearest(self, points: List["Point3D"]) -> "Point3D": """Return the nearest point. If multiple nearest point, returns the first in the list. Args: points (List[Point2D]): List of the points to test. Returns: Point3D: The nearest point, and if multiple, the first in the list. >>> Point3D(0, 0, 0).nearest((Point3D(-10, 10, 5), Point3D(10, 10, 1))) Point3D(x: 10, y: 10, z: 1) """ return min(points, key=lambda point: self.distance(point)) def optimized_path(self, points: List["Point3D"]) -> List["Point3D"]: """Get an optimized ordered path starting from the current point. From: https://stackoverflow.com/questions/45829155/sort-points-in-order-to-have-a-continuous-curve-using-python Args: points (List[Point3D]): List of 3d-points. Could contain the current point. Returns: List[Point3D]: Ordered list of 3d-points starting from the current point. >>> Point3D(-2, -5, 6).optimized_path([Point3D(0, 0, 7), Point3D(10, 5, 1), Point3D(1, 3, 3)]) [Point3D(x: -2, y: -5, z: 6), Point3D(x: 0, y: 0, z: 7), Point3D(x: 1, y: 3, z: 3), Point3D(x: 10, y: 5, z: 1)] """ start = self if start not in points: points.append(start) pass_by = points path = [start] pass_by.remove(start) while pass_by: nearest = min(pass_by, key=lambda point: point.distance(path[-1])) path.append(nearest) pass_by.remove(nearest) return path def round(self, ndigits: int = None) -> "Point3D": self.x = round(self.x, ndigits) self.y = round(self.y, ndigits) self.z = round(self.z, ndigits) self.coordinates = (self.x, self.y, self.z) return self def distance(self, point: "Point3D"): return sqrt((point.x - self.x) ** 2 + (point.y - self.y) ** 2 + (point.z - self.z) ** 2) @staticmethod def to_arrays(points: Union[List["Point3D"], "Point3D"]) -> Union[List[np.array], "Point3D"]: if isinstance(points, list): vectors = [] for point in points: vectors.append(np.array(point.coordinates)) return vectors else: return np.array(points.coordinates) @staticmethod def from_arrays(vectors: Union[List[np.array], "Point3D"]) -> Union[List["Point3D"], "Point3D"]: if isinstance(vectors, list): points = [] for vector in vectors: points.append(Point3D(vector[0], vector[1], vector[2])) return points else: return Point3D(vectors[0], vectors[1], vectors[2]) @staticmethod def to_2d(points: List["Point3D"], removed_axis: str) -> List[Point2D]: points_2d = [] if removed_axis == 'x': for i in range(len(points)): points_2d.append(Point2D(points[i].y, points[i].z)) if removed_axis == 'y': for i in range(len(points)): points_2d.append(Point2D(points[i].x, points[i].z)) if removed_axis == 'z': for i in range(len(points)): points_2d.append(Point2D(points[i].x, points[i].y)) return points_2d @staticmethod def insert_3d(points: List[Point2D], position: str, to_insert: List[int]) -> List["Point3D"]: points_3d = [] if position == 'x': for i in range(len(points)): points_3d.append( Point3D(to_insert[i], points[i].x, points[i].y)) if position == 'y': for i in range(len(points)): points_3d.append( Point3D(points[i].x, to_insert[i], points[i].y)) if position == 'z': for i in range(len(points)): points_3d.append( Point3D(points[i].x, points[i].y, to_insert[i])) return points_3d