from math import sqrt, cos, pi, sin import numpy as np from networks.geometry.segment_tools import discrete_segment, middle_point, parallel def optimized_path(points, start=None): # https://stackoverflow.com/questions/45829155/sort-points-in-order-to-have-a-continuous-curve-using-python if start is None: start = points[0] pass_by = points path = [start] pass_by.remove(start) while pass_by: nearest = min(pass_by, key=lambda x: distance(path[-1], x)) path.append(nearest) pass_by.remove(nearest) return path def nearest(points, start): return min(points, key=lambda x: distance(start, x)) def sort_by_clockwise(points): """ Sort point in a rotation order. Works in 2d but supports 3d. https://stackoverflow.com/questions/58377015/counterclockwise-sorting-of-x-y-data Args: points: List of points to sort in the form of [(x, y, z), (x, y, z)] or [(x, y), (x, y), (x, y), (x, y)]... Returns: list: List of tuples of coordinates sorted (2d or 3d). >>> sort_by_clockwise([(0, 45, 100), (4, -5, 5),(-5, 36, -2)]) [(0, 45, 100), (-5, 36, -2), (4, -5, 5)] """ x, y = [], [] for i in range(len(points)): x.append(points[i][0]) y.append(points[i][-1]) x, y = np.array(x), np.array(y) x0 = np.mean(x) y0 = np.mean(y) r = np.sqrt((x - x0) ** 2 + (y - y0) ** 2) angles = np.where( (y - y0) > 0, np.arccos((x - x0) / r), 2 * np.pi - np.arccos((x - x0) / r), ) mask = np.argsort(angles) x_sorted = list(x[mask]) y_sorted = list(y[mask]) # Rearrange tuples to get the right coordinates. sorted_points = [] for i in range(len(points)): j = 0 while (x_sorted[i] != points[j][0]) and (y_sorted[i] != points[j][-1]): j += 1 else: if len(points[0]) == 3: sorted_points.append((x_sorted[i], points[j][1], y_sorted[i])) else: sorted_points.append((x_sorted[i], y_sorted[i])) return sorted_points def segments_intersection(line0, line1, full_line=True): """ Find (or not) intersection between two lines. Works in 2d but supports 3d. https://stackoverflow.com/questions/20677795/how-do-i-compute-the-intersection-point-of-two-lines Args: line0 (tuple): Tuple of tuple of coordinates. line1 (tuple): Tuple of tuple of coordinates. full_line (bool, optional): True to find intersections along full line - not just in the segment. Returns: tuple: Coordinates (2d). >>> segments_intersection(((0, 0), (0, 5)), ((2.5, 2.5), (-2.5, 2.5))) """ xdiff = (line0[0][0] - line0[1][0], line1[0][0] - line1[1][0]) ydiff = (line0[0][-1] - line0[1][-1], line1[0][-1] - line1[1][-1]) def det(a, b): return a[0] * b[-1] - a[-1] * b[0] div = det(xdiff, ydiff) if div == 0: return None d = (det(*line0), det(*line1)) x = det(d, xdiff) / div y = det(d, ydiff) / div if not full_line: if ( min(line0[0][0], line0[1][0]) <= x <= max(line0[0][0], line0[1][0]) and min(line1[0][0], line1[1][0]) <= x <= max(line1[0][0], line1[1][0]) and min(line0[0][-1], line0[1][-1]) <= y <= max(line0[0][-1], line0[1][-1]) and min(line1[0][-1], line1[1][-1]) <= y <= max(line1[0][-1], line1[1][-1]) ): if len(line0[0]) > 2: return middle_point(nearest(discrete_segment(line1[0], line1[1], pixel_perfect=True), (x, y)), nearest(discrete_segment(line0[0], line0[1], pixel_perfect=True), (x, y))) else: return x, y else: return None else: if len(line0[0]) > 2: return middle_point(nearest(discrete_segment(line1[0], line1[1], pixel_perfect=True), (x, y)), nearest(discrete_segment(line0[0], line0[1], pixel_perfect=True), (x, y))) else: return x, y def circle_segment_intersection( circle_center, circle_radius, xy0, xy1, full_line=True, tangent_tolerance=1e-9 ): """ Find the points at which a circle intersects a line-segment. This can happen at 0, 1, or 2 points. Works in 2d but supports 3d. https://stackoverflow.com/questions/30844482/what-is-most-efficient-way-to-find-the-intersection-of-a-line-and-a-circle-in-py Note: We follow: http://mathworld.wolfram.com/Circle-LineIntersection.html Args: circle_center (tuple): The (x, y) location of the circle center. circle_radius (int): The radius of the circle. xy0 (tuple): The (x, y) location of the first point of the segment. xy1 ([tuple]): The (x, y) location of the second point of the segment. full_line (bool, optional): True to find intersections along full line - not just in the segment. False will just return intersections within the segment. Defaults to True. tangent_tolerance (float, optional): Numerical tolerance at which we decide the intersections are close enough to consider it a tangent. Defaults to 1e-9. Returns: list: A list of length 0, 1, or 2, where each element is a point at which the circle intercepts a line segment (2d). """ (p1x, p1y), (p2x, p2y), (cx, cy) = ( (xy0[0], xy0[-1]), (xy1[0], xy1[-1]), (circle_center[0], circle_center[-1]), ) (x1, y1), (x2, y2) = (p1x - cx, p1y - cy), (p2x - cx, p2y - cy) dx, dy = (x2 - x1), (y2 - y1) dr = (dx ** 2 + dy ** 2) ** 0.5 big_d = x1 * y2 - x2 * y1 discriminant = circle_radius ** 2 * dr ** 2 - big_d ** 2 if discriminant < 0: # No intersection between circle and line return [] else: # There may be 0, 1, or 2 intersections with the segment intersections = [ ( cx + ( big_d * dy + sign * (-1 if dy < 0 else 1) * dx * discriminant ** 0.5 ) / dr ** 2, cy + (-big_d * dx + sign * abs(dy) * discriminant ** 0.5) / dr ** 2, ) for sign in ((1, -1) if dy < 0 else (-1, 1)) ] # This makes sure the order along the segment is correct if ( not full_line ): # If only considering the segment, filter out intersections that do not fall within the segment fraction_along_segment = [ (xi - p1x) / dx if abs(dx) > abs(dy) else (yi - p1y) / dy for xi, yi in intersections ] intersections = [ pt for pt, frac in zip(intersections, fraction_along_segment) if 0 <= frac <= 1 ] if ( len(intersections) == 2 and abs(discriminant) <= tangent_tolerance ): # If line is tangent to circle, return just one point (as both intersections have same location) return [intersections[0]] else: return intersections def perpendicular(distance, xy1, xy2): """ Return a tuple of the perpendicular coordinates. Args: distance (int): Distance from the line[xy1;xy2]. xy1 (tuple): First coordinates. xy2 (tuple): Second coordinates. Returns: tuple: Coordinates of the line length distance, perpendicular to [xy1; xy2] at xy1. """ (x1, y1) = xy1[0], xy1[-1] (x2, y2) = xy2[0], xy2[-1] dx = x1 - x2 dy = y1 - y2 dist = sqrt(dx * dx + dy * dy) dx /= dist dy /= dist x3 = x1 + (distance / 2) * dy y3 = y1 - (distance / 2) * dx x4 = x1 - (distance / 2) * dy y4 = y1 + (distance / 2) * dx return (x3, y3), (x4, y4) def curved_corner_by_distance( intersection, xyz0, xyz1, distance_from_intersection, resolution, full_line=True ): # Compute the merging point on the first line start_curve_point_d1 = circle_segment_intersection( intersection, distance_from_intersection, xyz0, intersection, full_line )[0] start_curve_point_d1 = ( round(start_curve_point_d1[0]), nearest(discrete_segment(intersection, xyz0), (start_curve_point_d1[0], 100, start_curve_point_d1[-1]))[1], round(start_curve_point_d1[-1])) # Compute the merging point on the second line end_curve_point_d1 = circle_segment_intersection( intersection, distance_from_intersection, xyz1, intersection, full_line )[0] end_curve_point_d1 = ( round(end_curve_point_d1[0]), nearest(discrete_segment(intersection, xyz1), (end_curve_point_d1[0], 100, end_curve_point_d1[-1]))[1], round(end_curve_point_d1[-1])) # Compute the merging point on the first line start_curve_point_d2 = circle_segment_intersection( (intersection[0], intersection[1]), distance_from_intersection, ( xyz0[0], xyz0[1]), (intersection[0], intersection[1]), full_line )[0] start_curve_point_d2 = ( round(start_curve_point_d2[0]), round(start_curve_point_d2[1]), nearest(discrete_segment(intersection, xyz0), (start_curve_point_d1[0], start_curve_point_d2[-1], 100))[-1]) # Compute the merging point on the second line end_curve_point_d2 = circle_segment_intersection( (intersection[0], intersection[1] ), distance_from_intersection, (xyz1[0], xyz1[1]), (intersection[0], intersection[1]), full_line )[0] end_curve_point_d2 = ( round(end_curve_point_d2[0]), round(end_curve_point_d2[-1]), nearest(discrete_segment( intersection, xyz1), (end_curve_point_d2[0], end_curve_point_d2[-1], 100))[-1]) # Compute the intersection between perpendicular lines at the merging points # Higher value for better precision perpendicular0_d1 = perpendicular( 10e3, start_curve_point_d1, intersection)[0] perpendicular0_d1 = ( round(perpendicular0_d1[0]), round(perpendicular0_d1[-1])) perpendicular1_d1 = perpendicular( 10e3, end_curve_point_d1, intersection)[1] perpendicular1_d1 = ( round(perpendicular1_d1[0]), round(perpendicular1_d1[-1])) perpendicular0_d2 = perpendicular( 10e3, (start_curve_point_d1[0], start_curve_point_d1[1]), (intersection[0], intersection[1]))[0] perpendicular0_d2 = ( round(perpendicular0_d2[0]), round(perpendicular0_d2[1])) perpendicular1_d2 = perpendicular( 10e3, (end_curve_point_d1[0], end_curve_point_d1[1]), (intersection[0], intersection[1]))[1] perpendicular1_d2 = ( round(perpendicular1_d2[0]), round(perpendicular1_d2[1])) # Centers center_d1 = segments_intersection( (perpendicular0_d1, start_curve_point_d1), (perpendicular1_d1, end_curve_point_d1)) center_d1 = round(center_d1[0]), middle_point( xyz0, xyz1)[1], round(center_d1[-1]) center_d2 = segments_intersection( (perpendicular0_d2, (start_curve_point_d1[0], start_curve_point_d1[1])), (perpendicular1_d2, (end_curve_point_d1[0], end_curve_point_d1[1]))) center_d2 = round(center_d2[0]), round(center_d2[1]), middle_point( xyz0, xyz1)[-1] # Compute the curvature for indications curvature_d1 = round(distance(start_curve_point_d1, center_d1)) curvature_d2 = round( distance((start_curve_point_d1[0], start_curve_point_d1[1]), center_d2)) # Return a full discrete circle or only some points of it if resolution != 0: circle_data_d1 = circle_points( center_d1, curvature_d1, resolution ) circle_data_d2 = circle_points( center_d2, curvature_d2, resolution ) else: circle_data_d1 = circle(center_d1, curvature_d1)[0] circle_data_d2 = circle(center_d2, curvature_d2)[0] # Find the correct points on the circle. curved_corner_points_temporary_d1 = [start_curve_point_d1] for point in circle_data_d1: if is_in_triangle(point, intersection, start_curve_point_d1, end_curve_point_d1): curved_corner_points_temporary_d1.append(point) curved_corner_points_temporary_d1.append(end_curve_point_d1) # Be sure that all the points are in correct order. curve_corner_points_d1 = optimized_path( curved_corner_points_temporary_d1, start_curve_point_d1) # On the other axis curved_corner_points_temporary_d2 = [ (start_curve_point_d1[0], start_curve_point_d1[1])] for point in circle_data_d2: if is_in_triangle(point, (intersection[0], intersection[1]), (start_curve_point_d1[0], start_curve_point_d1[1]), (end_curve_point_d1[0], end_curve_point_d1[1])): curved_corner_points_temporary_d2.append(point) curved_corner_points_temporary_d2.append( (end_curve_point_d1[0], end_curve_point_d1[1])) # Be sure that all the points are in correct order. curve_corner_points_d2 = optimized_path( curved_corner_points_temporary_d2, (start_curve_point_d1[0], start_curve_point_d1[1])) # Determine driving axis if len(curve_corner_points_d1) <= len(curve_corner_points_d2): main_points = curve_corner_points_d2 projected_points = curve_corner_points_d1 else: main_points = curve_corner_points_d1 projected_points = curve_corner_points_d2 print("Main\n") print(main_points) print("Projected\n") print(projected_points) curve_corner_points = [] for i in range(len(main_points)): y = projected_points[round( i * (len(projected_points)-1)/len(main_points))][-1] curve_corner_points.append((round(main_points[i][0]), round( y), round(main_points[i][-1]))) return curve_corner_points, center_d1, curvature_d1, center_d2, curvature_d2 def curved_corner_by_curvature( intersection, xyz0, xyz1, curvature_radius, resolution, full_line=True ): # 3d support limited to linear interpollation on the y axis. print(xyz0, intersection, xyz1) # Get the center. center = segments_intersection(parallel( (xyz0, intersection), -curvature_radius), parallel((xyz1, intersection), curvature_radius)) center = round(center[0]), round(center[-1]) # Return a full discrete circle or only some points of it. if resolution != 0: circle_data = circle_points( center, curvature_radius, resolution ) else: circle_data = circle(center, curvature_radius)[0] # Compute the merging point on the first line. print(center, curvature_radius, xyz0, intersection) start_curve_point = circle_segment_intersection( center, curvature_radius, xyz0, intersection, full_line )[0] start_curve_point = ( round(start_curve_point[0]), round(start_curve_point[-1])) # Compute the merging point on the second line. end_curve_point = circle_segment_intersection( center, curvature_radius, xyz1, intersection, full_line )[0] end_curve_point = ( round(end_curve_point[0]), round(end_curve_point[-1])) # Find the correct points on the circle. curved_corner_points_temporary = [start_curve_point] for point in circle_data: # print(point, intersection, start_curve_point, end_curve_point, is_in_triangle( # point, intersection, start_curve_point, end_curve_point)) # if is_in_triangle(point, intersection, start_curve_point, end_curve_point): curved_corner_points_temporary.append( (round(point[0]), round(point[1]))) curved_corner_points_temporary.append(end_curve_point) # Be sure that all the points are in correct order. curve_corner_points = optimized_path( curved_corner_points_temporary, start_curve_point) # Distance from intersection just for information distance_from_intersection = round(distance(start_curve_point, center)) return curve_corner_points, center, distance_from_intersection, parallel( (xyz0, intersection), -curvature_radius), parallel((xyz1, intersection), curvature_radius) def coordinates_to_vectors(coordinates): vectors = [] for coordinate in coordinates: vectors.append(np.array(coordinate.coordinate)) if (len(vectors) == 1): return vectors[0] else: return vectors