from math import cos, pi, sin from typing import List import numpy as np from networks.geometry.Point2D import Point2D class Circle: def __init__(self, center: Point2D): self.center = center self.radius = None self.points: List[Point2D] = [] self.inner = None self.outer = None self.points_thick: List[Point2D] = [] self.spaced_radius = None self.spaced_points: List[Point2D] = [] def __repr__(self): return f"Circle(center: {self.center}, radius: {self.radius}, spaced_radius: {self.spaced_radius}, inner: {self.inner}, outer: {self.outer})" def circle(self, radius: int) -> List[Point2D]: self.radius = radius center = self.center.copy() x = -radius y = 0 error = 2-2*radius while (True): self.points.append(Point2D(center.x-x, center.y+y)) self.points.append(Point2D(center.x-y, center.y-x)) self.points.append(Point2D(center.x+x, center.y-y)) self.points.append(Point2D(center.x+y, center.y+x)) r = error if (r <= y): y += 1 error += y*2+1 if (r > x or error > y): x += 1 error += x*2+1 if (x < 0): continue else: break return self.points def circle_thick(self, inner: int, outer: int) -> List[Point2D]: """Compute discrete value of a 2d-circle with thickness. From: https://stackoverflow.com/questions/27755514/circle-with-thickness-drawing-algorithm Args: inner (int): The minimum radius at which the disc is filled (included). outer (int): The maximum radius where disc filling stops (included). Returns: list(Point2D): List of 2d-coordinates composing the surface. Note that some coordinates are redondant and are not ordered. >>> Circle(Point2D(0, 0), 5, 10) """ self.inner = inner self.outer = outer center = self.center.copy() xo = outer xi = inner y = 0 erro = 1 - xo erri = 1 - xi while xo >= y: self._x_line(center.x + xi, center.x + xo, center.y + y) self._y_line(center.x + y, center.y + xi, center.y + xo) self._x_line(center.x - xo, center.x - xi, center.y + y) self._y_line(center.x - y, center.y + xi, center.y + xo) self._x_line(center.x - xo, center.x - xi, center.y - y) self._y_line(center.x - y, center.y - xo, center.y - xi) self._x_line(center.x + xi, center.x + xo, center.y - y) self._y_line(center.x + y, center.y - xo, center.y - xi) y += 1 if erro < 0: erro += 2 * y + 1 else: xo -= 1 erro += 2 * (y - xo + 1) if y > inner: xi = y else: if erri < 0: erri += 2 * y + 1 else: xi -= 1 erri += 2 * (y - xi + 1) return self.points_thick def circle_spaced(self, number: int, radius: int) -> List[Point2D]: """Get evenly spaced coordinates of the circle. From: https://stackoverflow.com/questions/8487893/generate-all-the-points-on-the-circumference-of-a-circle Args: number (int): Number of coordinates to be returned. radius (int): Radius of the circle. Returns: list(Point2D): List of evenly spaced 2d-coordinates forming the circle. """ self.spaced_radius = radius center = self.center self.spaced_points = [ Point2D(round(cos(2 * pi / number * i) * radius), round(sin(2 * pi / number * i) * radius)) for i in range(0, number + 1) ] for i in range(len(self.spaced_points)): current_point = Point2D( self.spaced_points[i].x + center.x, self.spaced_points[i].y + center.y ).round() self.spaced_points[i] = current_point return self.spaced_points def _x_line(self, x1, x2, y): while x1 <= x2: self.points_thick.append(Point2D(x1, y)) x1 += 1 def _y_line(self, x, y1, y2): while y1 <= y2: self.points_thick.append(Point2D(x, y1)) y1 += 1