from math import sqrt, inf import numpy as np class Point2D: def __init__(self, x, y): self.x = x self.y = y def __repr__(self): return f"({self.x} {self.y})" def copy(self): return Point2D(self.x, self.y) def get_coordinates(self): return (self.x, self.y) def coordinates_to_vectors(coordinates): vectors = [] for coordinate in coordinates: vectors.append(np.array(coordinate.get_coordinates())) if (len(vectors) == 1): return vectors[0] else: return vectors class Polyline: def __init__(self, points): self.points = coordinates_to_vectors(points) self.length_polyline = len(points) self.vectors = [None] * self.length_polyline self.lengths = [None] * self.length_polyline self.unit_vectors = [None] * self.length_polyline self.tangente = [None] * self.length_polyline self.alpha_radii = [None] * self.length_polyline self.compute_requirements() self.compute_alpha_radii() def compute_requirements(self): # Between two points, there is only one segment for j in range(self.length_polyline-1): self.vectors[j] = self.points[j+1] - self.points[j] self.lengths[j] = np.linalg.norm(self.vectors[j]) self.unit_vectors[j] = self.vectors[j]/self.lengths[j] # print("\n\n", vectors, "\n\n", lengths, "\n\n", unit_vectors, "\n\n") # Between two segments, there is only one angle for k in range(1, self.length_polyline-1): cross = np.dot(self.unit_vectors[k], self.unit_vectors[k-1]) self.tangente[k] = sqrt((1+cross)/(1-cross)) def compute_alpha_radii(self): self.alpha_radii[0] = 0 self.alpha_radii[self.length_polyline-1] = 0 for i in range(1, self.length_polyline-2): self.alpha_radii[i] = min(self.lengths[i-1] - self.alpha_radii[i-1], (self.lengths[i] * self.tangente[i+1])/(self.tangente[i]+self.tangente[i+1])) def radius_balance(self, i): """ Returns the radius that balances the radii on either end segement i. """ alpha_a = min(self.lengths[i-1], (self.lengths[i]*self.tangente[i+1]) / (self.tangente[i] + self.tangente[i+1])) alpha_b = min(self.lengths[i+1], self.lengths[i]-alpha_a) return alpha_a, alpha_b, max(self.tangente[i]*alpha_a, self.tangente[i+1]*alpha_b) def alpha_assign(self, start_index, end_index): """ The Alpha-assign procedure assigning radii based on a polyline. """ minimum_radius, minimum_index = inf, end_index if start_index + 1 >= end_index: return alpha_b = min( self.lengths[start_index] - self.alpha_radii[start_index], self.lengths[start_index + 1]) current_radius = max(self.tangente[start_index] * self.alpha_radii[start_index], self.tangente[start_index + 1] * alpha_b) # Radis at initial segment if current_radius < minimum_radius: minimum_radius, minimum_index = current_radius, start_index alpha_low, alpha_high = self.alpha_radii[start_index], alpha_b for i in range(start_index + 1, end_index - 2): # Radii for internal segments alpha_a, alpha_b, current_radius = self.radius_balance(i) if current_radius < minimum_radius: alpha_low, alpha_high = alpha_a, self.alpha_radii[end_index] # Assign alphas at ends of selected segment self.alpha_radii[minimum_index] = alpha_low self.alpha_radii[minimum_index+1] = alpha_high print(alpha_low, alpha_high) # Recur on lower segments self.alpha_assign(start_index, minimum_index) # Recur on higher segments self.alpha_assign(minimum_index + 1, end_index) polyline = Polyline((Point2D(0, 0), Point2D(0, 10), Point2D( 10, 10), Point2D(10, 20), Point2D(20, 20), Point2D(20, 30), Point2D(60, 60), Point2D(60, 0))) # print(polyline.radius_balance(2)) polyline.alpha_assign(1, polyline.length_polyline-1) print(polyline.alpha_radii)