Curve surface okayish implementation
This commit is contained in:
40
main.py
40
main.py
@@ -7,17 +7,43 @@ import numpy as np
|
|||||||
editor = Editor(buffering=True)
|
editor = Editor(buffering=True)
|
||||||
|
|
||||||
y = 20
|
y = 20
|
||||||
coordinates = [(-854, 87+y, -210), (-770, 99+y, -207), (-736, 85+y, -184)]
|
|
||||||
resolution, distance = curve.resolution_distance(coordinates, 10)
|
# Over the hill
|
||||||
|
# coordinates = [(-854, 87+y, -210), (-770, 99+y, -207), (-736, 85+y, -184)]
|
||||||
|
|
||||||
|
# Along the river
|
||||||
|
# coordinates = [(-456, 69, -283), (-588, 106, -374), (-720, 71, -384), (-775, 67, -289), (-822, 84, -265), (-868, 77, -188), (-927, 96, -127),
|
||||||
|
# (-926, 65, -29), (-906, 98, 42), (-902, 137, 2), (-909, 115, -62), (-924, 76, -6), (-985, 76, 37), (-1043, 76, 28), (-1102, 66, 63)]
|
||||||
|
|
||||||
|
# Though the loop
|
||||||
|
coordinates = [(-1005, 113, -19), (-896, 113, 7),
|
||||||
|
(-807, 76, 54), (-738, 76, -10), (-678, 76, -86)]
|
||||||
|
|
||||||
|
resolution, distance = curve.resolution_distance(coordinates, 6)
|
||||||
|
|
||||||
curve_points = curve.curve(coordinates, resolution)
|
curve_points = curve.curve(coordinates, resolution)
|
||||||
curve_surface = CurveSurface.CurveSurface(curve_points)
|
curve_surface = CurveSurface.CurveSurface(coordinates)
|
||||||
curve_surface.compute_curvature()
|
curve_surface.compute_curvature()
|
||||||
curve_surface.compute_surface(50, curve_surface.curvature, 1)
|
|
||||||
|
|
||||||
for line_range in range(len(curve_surface.offset_points[0])):
|
curvature = []
|
||||||
for coordinate in curve_surface.offset_points[line_range]:
|
for i in range(len(curve_surface.curvature)):
|
||||||
editor.placeBlock(coordinate, Block("white_concrete"))
|
curvature.append((0, 1, 0))
|
||||||
|
|
||||||
|
curve_surface.compute_surface(10, curvature)
|
||||||
|
|
||||||
|
# for coordinate in curve_surface.offset_points:
|
||||||
|
# editor.placeBlock(coordinate, Block("white_concrete"))
|
||||||
|
|
||||||
|
for coordinate in curve_surface.surface:
|
||||||
|
editor.placeBlock(coordinate, Block("black_concrete"))
|
||||||
|
|
||||||
|
for coordinate in curve_surface.curve:
|
||||||
|
editor.placeBlock(coordinate, Block("red_concrete"))
|
||||||
|
|
||||||
|
|
||||||
|
# for line_range in range(len(curve_surface.offset_points[0])):
|
||||||
|
# for coordinate in curve_surface.offset_points[line_range]:
|
||||||
|
# editor.placeBlock(coordinate, Block("red_concrete"))
|
||||||
|
|
||||||
# offset = curve.offset(curve_points, i)
|
# offset = curve.offset(curve_points, i)
|
||||||
|
|
||||||
|
|||||||
@@ -21,7 +21,7 @@ def curve(target_points, resolution=40):
|
|||||||
z = coords[:, 2]
|
z = coords[:, 2]
|
||||||
|
|
||||||
# Compute
|
# Compute
|
||||||
tck, u = interpolate.splprep([x, y, z], s=2, k=2)
|
tck, u = interpolate.splprep([x, y, z], s=3, k=2)
|
||||||
x_knots, y_knots, z_knots = interpolate.splev(tck[0], tck)
|
x_knots, y_knots, z_knots = interpolate.splev(tck[0], tck)
|
||||||
u_fine = np.linspace(0, 1, resolution)
|
u_fine = np.linspace(0, 1, resolution)
|
||||||
x_fine, y_fine, z_fine = interpolate.splev(u_fine, tck)
|
x_fine, y_fine, z_fine = interpolate.splev(u_fine, tck)
|
||||||
@@ -71,7 +71,7 @@ def curvature(curve):
|
|||||||
dT_dt = np.array([[deriv_tangent_x[i], deriv_tangent_y[i], deriv_tangent_z[i]]
|
dT_dt = np.array([[deriv_tangent_x[i], deriv_tangent_y[i], deriv_tangent_z[i]]
|
||||||
for i in range(deriv_tangent_x.size)])
|
for i in range(deriv_tangent_x.size)])
|
||||||
length_dT_dt = np.sqrt(
|
length_dT_dt = np.sqrt(
|
||||||
deriv_tangent_x * deriv_tangent_x + deriv_tangent_y * deriv_tangent_y + deriv_tangent_z * deriv_tangent_z)
|
deriv_tangent_x * deriv_tangent_x + deriv_tangent_y * deriv_tangent_y + deriv_tangent_z * deriv_tangent_z + 0.0001)
|
||||||
|
|
||||||
normal = np.array([1/length_dT_dt]).transpose() * dT_dt
|
normal = np.array([1/length_dT_dt]).transpose() * dT_dt
|
||||||
return normal
|
return normal
|
||||||
|
|||||||
@@ -16,15 +16,66 @@ class CurveSurface:
|
|||||||
def compute_curvature(self):
|
def compute_curvature(self):
|
||||||
self.curvature = curve.curvature(self.curve)
|
self.curvature = curve.curvature(self.curve)
|
||||||
|
|
||||||
def compute_surface(self, width, normals, resolution):
|
def compute_surface(self, width, normals):
|
||||||
self.offset_points = [None] * (width * resolution)
|
self.offset_left = curve.offset(self.curve, width, normals)
|
||||||
|
self.offset_right = curve.offset(self.curve, -width, normals)
|
||||||
|
self.perpendicular_segment = []
|
||||||
|
|
||||||
|
for i in range(len(self.offset_left)):
|
||||||
|
self.perpendicular_segment.append(segment.discrete_segment(
|
||||||
|
self.offset_left[i], self.offset_right[i], pixel_perfect=False))
|
||||||
|
|
||||||
self.surface = []
|
self.surface = []
|
||||||
for line_range in range(width * resolution):
|
|
||||||
self.offset_points[line_range] = curve.offset(
|
|
||||||
self.curve, line_range/resolution, normals)
|
|
||||||
|
|
||||||
for i in range(len(self.offset_points[line_range])-1):
|
for i in range(len(self.perpendicular_segment)-1):
|
||||||
self.surface.extend(segment.discrete_segment(
|
for j in range(len(self.perpendicular_segment[i])):
|
||||||
self.offset_points[line_range][i], self.offset_points[line_range][i+1], pixel_perfect=False))
|
# Hypothesis
|
||||||
|
max_length_index = i
|
||||||
|
min_length_index = i+1
|
||||||
|
proportion = len(
|
||||||
|
self.perpendicular_segment[min_length_index])/len(self.perpendicular_segment[max_length_index])
|
||||||
|
|
||||||
print(self.surface)
|
# Reverse order if wrong hypothesis
|
||||||
|
if proportion > 1:
|
||||||
|
max_length_index = i+1
|
||||||
|
min_length_index = i
|
||||||
|
proportion = len(
|
||||||
|
self.perpendicular_segment[min_length_index])/len(self.perpendicular_segment[max_length_index])
|
||||||
|
|
||||||
|
for k in range(len(self.perpendicular_segment[max_length_index])):
|
||||||
|
self.surface.extend(segment.discrete_segment(
|
||||||
|
self.perpendicular_segment[max_length_index][k], self.perpendicular_segment[min_length_index][round(k * proportion)-1], pixel_perfect=False))
|
||||||
|
|
||||||
|
# for i in range(len(self.offset_points)):
|
||||||
|
# self.perpendicular_segment[i].append(
|
||||||
|
# segment.discrete_segment(self.offset_points[i], self.curve[i]))
|
||||||
|
|
||||||
|
# for j in range(len(self.offset_points)-1):
|
||||||
|
# # Hypothesis
|
||||||
|
# max_length_index = j
|
||||||
|
# min_length_index = j+1
|
||||||
|
# proportion = len(
|
||||||
|
# self.perpendicular_segment[min_length_index])/len(self.perpendicular_segment[max_length_index])
|
||||||
|
|
||||||
|
# # Reverse order if wrong hypothesis
|
||||||
|
# if proportion > 1:
|
||||||
|
# max_length_index = j+1
|
||||||
|
# min_length_index = j
|
||||||
|
# proportion = len(
|
||||||
|
# self.perpendicular_segment[min_length_index])/len(self.perpendicular_segment[max_length_index])
|
||||||
|
|
||||||
|
# for k in range(len(self.perpendicular_segment[max_length_index])):
|
||||||
|
# # print(self.perpendicular_segment[max_length_index][k],
|
||||||
|
# # self.perpendicular_segment[min_length_index][round(k * proportion)])
|
||||||
|
# self.surface.extend(segment.discrete_segment(
|
||||||
|
# self.perpendicular_segment[max_length_index][k], self.perpendicular_segment[min_length_index][round(k * proportion)]))
|
||||||
|
|
||||||
|
# for line_range in range(width * resolution):
|
||||||
|
# self.offset_points[line_range] = curve.offset(
|
||||||
|
# self.curve, line_range/resolution, normals)
|
||||||
|
|
||||||
|
# for i in range(len(self.offset_points[line_range])-1):
|
||||||
|
# self.surface.extend(segment.discrete_segment(
|
||||||
|
# self.offset_points[line_range][i], self.offset_points[line_range][i+1], pixel_perfect=False))
|
||||||
|
|
||||||
|
# print(self.surface)
|
||||||
|
|||||||
@@ -19,8 +19,11 @@ def parallel(segment, distance, normal=np.array([0, 1, 0])):
|
|||||||
|
|
||||||
def normalized(vector):
|
def normalized(vector):
|
||||||
magnitude = np.linalg.norm(vector)
|
magnitude = np.linalg.norm(vector)
|
||||||
normalized_vector = vector / magnitude
|
if magnitude != 0:
|
||||||
return normalized_vector
|
normalized_vector = vector / magnitude
|
||||||
|
return normalized_vector
|
||||||
|
else:
|
||||||
|
return [0, 0, 0]
|
||||||
|
|
||||||
|
|
||||||
def orthogonal(origin, point, distance, normal=np.array([0, 1, 0])):
|
def orthogonal(origin, point, distance, normal=np.array([0, 1, 0])):
|
||||||
@@ -47,6 +50,8 @@ def orthogonal(origin, point, distance, normal=np.array([0, 1, 0])):
|
|||||||
orthogonal = np.cross(normalized_vector, normalized_normal)
|
orthogonal = np.cross(normalized_vector, normalized_normal)
|
||||||
|
|
||||||
if np.array_equal(orthogonal, np.zeros((3,))):
|
if np.array_equal(orthogonal, np.zeros((3,))):
|
||||||
|
print(normalized_vector, normalized_normal, orthogonal, normal)
|
||||||
|
print(origin, point, distance)
|
||||||
raise ValueError("The input vectors are not linearly independent.")
|
raise ValueError("The input vectors are not linearly independent.")
|
||||||
|
|
||||||
orthogonal = np.round(
|
orthogonal = np.round(
|
||||||
|
|||||||
Reference in New Issue
Block a user