Segment error detection

This commit is contained in:
2024-06-19 15:17:03 +02:00
parent f301f46f91
commit 627bec0324
3 changed files with 84 additions and 72 deletions

66
main.py
View File

@@ -18,20 +18,23 @@ from gdpc import Editor, Block
def main(): def main():
editor = Editor(buffering=True) editor = Editor(buffering=True)
c = Circle(Point2D(400, -75)).circle_thick_by_line(5, 32) # c = Circle(Point2D(400, -75)).circle_thick_by_line(5, 32)
for i in range(len(c[0])): # for i in range(len(c[0])):
for j in range(len(c[0][i])): # for j in range(len(c[0][i])):
if i % 2 == 0: # if i % 2 == 0:
editor.placeBlock( # editor.placeBlock(
(c[0][i][j].x, 110, c[0][i][j].y), Block("white_concrete")) # (c[0][i][j].x, 110, c[0][i][j].y), Block("white_concrete"))
else: # else:
editor.placeBlock( # editor.placeBlock(
(c[0][i][j].x, 110, c[0][i][j].y), Block("black_concrete")) # (c[0][i][j].x, 110, c[0][i][j].y), Block("black_concrete"))
print(c[1]) # print(c[1])
for i in range(len(c[1])): # for i in range(len(c[1])):
for j in range(len(c[1][i])): # for j in range(len(c[1][i])):
editor.placeBlock( # editor.placeBlock(
(c[1][i][j].x, 110, c[1][i][j].y), Block("red_concrete")) # (c[1][i][j].x, 110, c[1][i][j].y), Block("red_concrete"))
Road([Point3D(464, 85, -225), Point3D(408, 105, -224),
Point3D(368, 104, -249), Point3D(368, 85, -296), Point3D(457, 79, -292)], 15)
# rectangle_house_mountain, rectangle_building, skeleton_highway, skeleton_mountain, road_grid = world_maker() # rectangle_house_mountain, rectangle_building, skeleton_highway, skeleton_mountain, road_grid = world_maker()
# editor = Editor(buffering=True) # editor = Editor(buffering=True)
@@ -128,38 +131,3 @@ def set_roads(skeleton: Skeleton, origin):
if __name__ == '__main__': if __name__ == '__main__':
main() main()
"""
from gdpc import Editor, Block, geometry, Transform
import networks.curve as curve
import numpy as np
from utils.JsonReader import JsonReader
from utils.YamlReader import YamlReader
from buildings.Building import Building
from utils.functions import *
from utils.Enums import DIRECTION
editor = Editor(buffering=True)
# get every differents buildings shapes
f = JsonReader('buildings\shapes.json')
shapes = f.data
baseShape = shapes[0]['matrice']
# get the random data for the buildings
y = YamlReader('params.yml')
random_data = y.data
#move your editor to the position you wanna build on
transform = Transform((75,-60,110),rotation = 0)
editor.transform.push(transform)
# clear the area you build on
geometry.placeCuboid(editor, (-5,0,-8), (25,100,25), Block("air"))
# create a building at the relative position 0,0 with 20 blocks length and 20 blocks width, with a normal shape and 10 floors
building = Building(random_data["buildings"], [(0,0,0), (20,30,20)], baseShape, DIRECTION.EAST)
# build it with your custom materials
building.build(editor, ["stone_bricks","glass_pane","glass","cobblestone_wall","stone_brick_stairs","oak_planks","white_concrete","cobblestone","stone_brick_slab","iron_bars"])
"""

View File

@@ -12,7 +12,10 @@ class Segment2D:
self.end = end self.end = end
self.points: List[Point2D] = [] self.points: List[Point2D] = []
self.points_thick: List[Point2D] = [] self.points_thick: List[Point2D] = []
self.points_thick_by_line: List[Union[Point2D, int]] = []
self.points_thick_by_line: List[List[Point2D]] = []
self.gaps: List[List[Point2D]] = []
self.thickness = None self.thickness = None
def __repr__(self): def __repr__(self):
@@ -58,7 +61,7 @@ class Segment2D:
delta_2x = 2*delta_x delta_2x = 2*delta_x
delta_2y = 2*delta_y delta_2y = 2*delta_y
self._add_points(start, _is_computing_thickness) self._add_points(start, _is_computing_thickness, LINE_OVERLAP.NONE)
if (delta_x > delta_y): if (delta_x > delta_y):
error = delta_2y - delta_x error = delta_2y - delta_x
@@ -66,30 +69,34 @@ class Segment2D:
start.x += step_x start.x += step_x
if (error >= 0): if (error >= 0):
if (overlap == LINE_OVERLAP.MAJOR): if (overlap == LINE_OVERLAP.MAJOR):
self._add_points(start, _is_computing_thickness) self._add_points(
start, _is_computing_thickness, overlap)
start.y += step_y start.y += step_y
if (overlap == LINE_OVERLAP.MINOR): if (overlap == LINE_OVERLAP.MINOR):
self._add_points( self._add_points(
Point2D(start.copy().x - step_x, start.copy().y), _is_computing_thickness) Point2D(start.copy().x - step_x, start.copy().y), _is_computing_thickness, overlap)
error -= delta_2x error -= delta_2x
error += delta_2y error += delta_2y
self._add_points(start, _is_computing_thickness) self._add_points(
start, _is_computing_thickness, LINE_OVERLAP.NONE)
else: else:
error = delta_2x - delta_y error = delta_2x - delta_y
while (start.y != end.y): while (start.y != end.y):
start.y += step_y start.y += step_y
if (error >= 0): if (error >= 0):
if (overlap == LINE_OVERLAP.MAJOR): if (overlap == LINE_OVERLAP.MAJOR):
self._add_points(start, _is_computing_thickness) self._add_points(
start, _is_computing_thickness, overlap)
start.x += step_x start.x += step_x
if (overlap == LINE_OVERLAP.MINOR): if (overlap == LINE_OVERLAP.MINOR):
self._add_points( self._add_points(
Point2D(start.copy().x, start.copy().y - step_y), _is_computing_thickness) Point2D(start.copy().x, start.copy().y - step_y), _is_computing_thickness, overlap)
error -= delta_2y error -= delta_2y
error += delta_2x error += delta_2x
self._add_points(start, _is_computing_thickness) self._add_points(
start, _is_computing_thickness, LINE_OVERLAP.NONE)
if not _is_computing_thickness: if not _is_computing_thickness:
return self.points return self.points
@@ -110,6 +117,7 @@ class Segment2D:
>>> self.compute_thick_segment(self.start, self.end, self.thickness, self.thickness_mode) >>> self.compute_thick_segment(self.start, self.end, self.thickness, self.thickness_mode)
""" """
self.points_thick_by_line = [[] for _ in range(thickness+1)] self.points_thick_by_line = [[] for _ in range(thickness+1)]
self.gaps = [[] for _ in range(thickness+1)]
start = self.start.copy() start = self.start.copy()
end = self.end.copy() end = self.end.copy()
@@ -243,10 +251,14 @@ class Segment2D:
np.round((self.start.y + self.end.y) / 2.0).astype(int), np.round((self.start.y + self.end.y) / 2.0).astype(int),
) )
def _add_points(self, points, is_computing_thickness): def _add_points(self, points, is_computing_thickness, overlap):
if is_computing_thickness > 0: if is_computing_thickness > 0:
self.points_thick.append(points.copy()) self.points_thick.append(points.copy())
self.points_thick_by_line[is_computing_thickness].append( if overlap == LINE_OVERLAP.NONE:
(points.copy())) self.points_thick_by_line[is_computing_thickness].append(
(points.copy()))
else:
self.gaps[is_computing_thickness].append(
(points.copy()))
else: else:
self.points.append(points.copy()) self.points.append(points.copy())

View File

@@ -65,9 +65,10 @@ class Road:
# self.output_block.append( # self.output_block.append(
# (Point3D.insert_3d([self.polyline.segments[i].points_thick[j]], 'y', [self.polyline_total_line_output[nearest[0]].y])[0].coordinates, Block("stone"))) # (Point3D.insert_3d([self.polyline.segments[i].points_thick[j]], 'y', [self.polyline_total_line_output[nearest[0]].y])[0].coordinates, Block("stone")))
for k in range(len(self.polyline.segments[i].points_thick_by_line)): for k in range(len(self.polyline.segments[i].points_thick_by_line)):
match k: kk = k % 7
match kk:
case 0: case 0:
blob = 'black_concrete' blob = 'pink_concrete'
case 1: case 1:
blob = 'red_concrete' blob = 'red_concrete'
case 2: case 2:
@@ -87,12 +88,17 @@ class Road:
self.output_block.append( self.output_block.append(
(Point3D.insert_3d([self.polyline.segments[i].points_thick_by_line[k][m]], 'y', [self.polyline_total_line_output[nearest[0]].y])[0].coordinates, Block(blob))) (Point3D.insert_3d([self.polyline.segments[i].points_thick_by_line[k][m]], 'y', [self.polyline_total_line_output[nearest[0]].y])[0].coordinates, Block(blob)))
for m in range(len(self.polyline.segments[i].gaps[k])):
nearest = self.polyline.segments[i].gaps[k][m].nearest(
Point3D.to_2d(self.polyline_total_line_output, removed_axis='y'), True)
self.output_block.append(
(Point3D.insert_3d([self.polyline.segments[i].gaps[k][m]], 'y', [self.polyline_total_line_output[nearest[0]].y])[0].coordinates, Block("white_concrete")))
for i in range(1, len(self.polyline.centers)-1): for i in range(1, len(self.polyline.centers)-1):
# Circle # Circle
circle = Circle(self.polyline.centers[i]) circle, gaps = Circle(self.polyline.centers[i]).circle_thick_by_line(int(
circle.circle_thick(int( (self.polyline.radii[i]-self.width/2)), int((self.polyline.radii[i]+self.width/2)+1))
(self.polyline.radii[i]-self.width/2)), int((self.polyline.radii[i]+self.width/2)-1))
# Better to do here than drawing circle arc inside big triangle! # Better to do here than drawing circle arc inside big triangle!
double_point_a = Point2D.from_arrays(Point2D.to_arrays(self.polyline.acrs_intersections[i][0]) + 5 * (Point2D.to_arrays( double_point_a = Point2D.from_arrays(Point2D.to_arrays(self.polyline.acrs_intersections[i][0]) + 5 * (Point2D.to_arrays(
@@ -100,13 +106,39 @@ class Road:
double_point_b = Point2D.from_arrays(Point2D.to_arrays(self.polyline.acrs_intersections[i][2]) + 5 * (Point2D.to_arrays( double_point_b = Point2D.from_arrays(Point2D.to_arrays(self.polyline.acrs_intersections[i][2]) + 5 * (Point2D.to_arrays(
self.polyline.acrs_intersections[i][2]) - Point2D.to_arrays(self.polyline.centers[i]))) self.polyline.acrs_intersections[i][2]) - Point2D.to_arrays(self.polyline.centers[i])))
for j in range(len(circle.points_thick)): for j in range(len(circle)):
if circle.points_thick[j].is_in_triangle(double_point_a, self.polyline.centers[i], double_point_b): for k in range(len(circle[j])):
nearest = circle.points_thick[j].nearest( jj = j % 7
Point3D.to_2d(self.polyline_total_line_output, removed_axis='y'), True) match jj:
self.output_block.append( case 0:
(Point3D.insert_3d([circle.points_thick[j]], 'y', [ blob = 'pink_concrete'
self.polyline_total_line_output[nearest[0]].y])[0].coordinates, Block("white_concrete"))) case 1:
blob = 'red_concrete'
case 2:
blob = 'orange_concrete'
case 3:
blob = 'yellow_concrete'
case 4:
blob = 'green_concrete'
case 5:
blob = 'blue_concrete'
case 6:
blob = 'purple_concrete'
if circle[j][k].is_in_triangle(double_point_a, self.polyline.centers[i], double_point_b):
nearest = circle[j][k].nearest(
Point3D.to_2d(self.polyline_total_line_output, removed_axis='y'), True)
self.output_block.append(
(Point3D.insert_3d([circle[j][k]], 'y', [
self.polyline_total_line_output[nearest[0]].y])[0].coordinates, Block(blob)))
for j in range(len(gaps)):
for k in range(len(gaps[j])):
if gaps[j][k].is_in_triangle(double_point_a, self.polyline.centers[i], double_point_b):
nearest = gaps[j][k].nearest(
Point3D.to_2d(self.polyline_total_line_output, removed_axis='y'), True)
self.output_block.append(
(Point3D.insert_3d([gaps[j][k]], 'y', [
self.polyline_total_line_output[nearest[0]].y])[0].coordinates, Block("white_concrete")))
def _projection_polyline(self): def _projection_polyline(self):
nearest_points_to_reference = [] nearest_points_to_reference = []