Added data analysis (WORK IN PROGRESS)

This commit is contained in:
NichiHachi
2024-06-12 00:56:55 +02:00
parent c8abb90a84
commit 2b2d5ba869
13 changed files with 428 additions and 75 deletions

View File

@@ -1,4 +1,8 @@
gdpc==7.1.0 gdpc==7.1.0
networkx==3.3
numpy==1.26.4 numpy==1.26.4
Pillow==10.3.0
pygame==2.5.2 pygame==2.5.2
scipy==1.13.0 scipy==1.13.1
skan==0.11.1
skimage==0.0

View File

@@ -1,4 +1,4 @@
from District import District, CustomDistrict, VoronoiDistrict from District import District
from Position import Position from Position import Position
from PIL import Image from PIL import Image
import random import random
@@ -33,13 +33,14 @@ class City:
watermap.close() watermap.close()
heightmap.close() heightmap.close()
def add_district(self, center: Position): def add_district(self, center: Position, district_type: str = ""):
""" """
Add a new district to the city. Add a new district to the city.
:param district_type:
:param center: The center position of the new district. :param center: The center position of the new district.
""" """
self.districts.append(CustomDistrict(len(self.districts) + 1, center)) self.districts.append(District(len(self.districts) + 1, center, district_type))
self.map_data[center.y][center.x] = len(self.districts) self.map_data[center.y][center.x] = len(self.districts)
def is_expend_finished(self): def is_expend_finished(self):
@@ -121,6 +122,6 @@ class City:
if __name__ == '__main__': if __name__ == '__main__':
city = City() city = City()
for i in range(10): for i in range(10):
city.add_district(Position(random.randint(0, 600), random.randint(0, 600))) city.add_district(Position(random.randint(0, 400), random.randint(0, 400)))
city.loop_expend_district() city.loop_expend_district()
city.custom_district_draw_map() city.custom_district_draw_map()

View File

@@ -1,31 +1,35 @@
from Position import Position from Position import Position
class District: class District:
""" """
The District class represents a district in the world. The CustomDistrict class represents a district that can be expanded.
A district can be characterized by its type and its unique id.
Attributes: Attributes:
tile_id (int): The unique id of the district. center_expend (Position): The center position from which the district expands.
type (str): The type of the district. Can be "Forest", "City", "Mountain" or "Villa". area (list): The list of positions that are part of the district.
area_expend_from_point (list): The list of positions from which the district can expand.
area_expend (list): The list of positions to which the district will maybe expand.
""" """
def __init__(self, tile_id: int, center: Position, type: str = ""):
def __init__(self, tile_id: int):
""" """
The constructor for the District class. The constructor for the District class.
:param tile_id: Unique id of the district (Must be greater than 0) :param tile_id: Unique id of the district (Must be greater than 0)
:param center: The center position from which the district expands.
:param type: The type of the district (Forest, City, Mountain, Villa)
""" """
if tile_id <= 0: if tile_id <= 0:
raise ValueError("Tile id must be greater than 0") raise ValueError("Tile id must be greater than 0")
self.tile_id = tile_id self.tile_id = tile_id
self.type = "" #Forest, City, Montain, Villa self.type = type
self.center_expend = center
self.area = [center]
self.area_expend_from_point = [center]
self.area_expend = []
def verify_point(self, point: Position, point_new: Position, map_data: list[list[int]], height_map: list[list[int]]):
def verify_point(point: Position, point_new: Position, map_data: list[list[int]], height_map: list[list[int]]):
""" """
Function to verify if a new point can be added to a district extend area list. Verify if a new point can be added to a district extend area list.
:param point: The current point. :param point: The current point.
:param point_new: The new point to be verified. :param point_new: The new point to be verified.
@@ -36,31 +40,8 @@ def verify_point(point: Position, point_new: Position, map_data: list[list[int]]
return (0 <= point_new.x < len(map_data[0]) and return (0 <= point_new.x < len(map_data[0]) and
0 <= point_new.y < len(map_data) and 0 <= point_new.y < len(map_data) and
map_data[point_new.y][point_new.x] == 0 and map_data[point_new.y][point_new.x] == 0 and
abs(height_map[point_new.y][point_new.x] - height_map[point.y][point.x]) < 2) (self.type == "Mountain" or
abs(height_map[point_new.y][point_new.x] - height_map[point.y][point.x]) < 2))
class CustomDistrict(District):
"""
The CustomDistrict class represents a district that can be expanded.
Attributes:
center_expend (Position): The center position from which the district expands.
area (list): The list of positions that are part of the district.
area_expend_from_point (list): The list of positions from which the district can expand.
area_expend (list): The list of positions to which the district will maybe expand.
"""
def __init__(self, tile_id: int, center: Position):
"""
The constructor for the CustomDistrict class.
:param tile_id: Unique id of the district (Must be greater than 0)
:param center: The center position from which the district expands.
"""
super().__init__(tile_id)
self.center_expend = center
self.area = [center]
self.area_expend_from_point = [center]
self.area_expend = []
def update_expend_points(self, point: Position, map_data: list[list[int]], height_map: list[list[int]]): def update_expend_points(self, point: Position, map_data: list[list[int]], height_map: list[list[int]]):
""" """
@@ -71,20 +52,7 @@ class CustomDistrict(District):
:param height_map: The 2D list representing the height map. :param height_map: The 2D list representing the height map.
""" """
for pos in [Position(1, 0), Position(-1, 0), Position(0, 1), Position(0, -1)]: for pos in [Position(1, 0), Position(-1, 0), Position(0, 1), Position(0, -1)]:
if verify_point(point, point + pos, map_data, height_map): if self.verify_point(point, point + pos, map_data, height_map):
if point + pos not in self.area_expend: if point + pos not in self.area_expend:
self.area_expend.append(point + pos) self.area_expend.append(point + pos)
self.area_expend_from_point.remove(point) self.area_expend_from_point.remove(point)
class Edge: #I'm Edging rn
def __init__(self, point1, point2):
self.point1 = point1
self.point2 = point2
class VoronoiDistrict(District):
def __init__(self, tile_id: int, center: Position):
super().__init__(tile_id)
self.center = center
self.edges = []

205
world_maker/Skeleton.py Normal file
View File

@@ -0,0 +1,205 @@
import numpy as np
import skan
from skimage.morphology import skeletonize
from skan.csr import skeleton_to_csgraph
from collections import Counter
from PIL import Image
import random
from gdpc import Editor
class Skeleton:
def __init__(self):
self.lines = []
self.intersections = []
self.centers = []
self.graph = []
self.coordinates = []
def setSkeleton(self, data):
binary_skeleton = skeletonize(data)
graph, coordinates = skeleton_to_csgraph(binary_skeleton)
self.graph = graph.tocoo()
# List of lists. Inverted coordinates.
coordinates = list(coordinates)
print(coordinates)
for i in range(len(coordinates)):
coordinates[i] = list(coordinates[i])
print(coordinates)
coordinates_final = []
for i in range(len(coordinates[0])):
print((coordinates[0][i], coordinates[1][i], coordinates[2][i]))
coordinates_final.append((coordinates[0][i], coordinates[1][i], coordinates[2][i]))
self.coordinates = coordinates_final
def findNextElements(self, key):
"""Find the very nearest elements"""
line = []
values = np.array(self.graph.row)
indices = np.where(values == key)[0]
for i in range(len(indices)):
if self.graph.row[indices[i]] == key:
line.append(self.graph.col[indices[i]])
return line
def findLine(self, key):
nextKeys = self.findNextElements(key)
if len(nextKeys) >= 3: # Intersections.
return nextKeys
if len(nextKeys) == 2 or len(nextKeys) == 1: # In line or endpoints.
line = []
line.append(key)
line.insert(0, nextKeys[0])
if len(nextKeys) == 2:
line.insert(len(line), nextKeys[1])
nextKeys = line[0], line[-1]
while len(nextKeys) == 2 or len(nextKeys) == 1:
extremity = []
for key in nextKeys:
nextKeys = self.findNextElements(key)
if len(nextKeys) <= 2:
# Add the neighbors that is not already in the line.
for element in nextKeys:
if element not in line:
extremity.append(element)
line.append(element)
if len(nextKeys) >= 3:
# Add the intersection only.
extremity.append(key)
nextKeys = []
for key in extremity:
ends = self.findNextElements(key)
if len(ends) == 2:
nextKeys.append(key)
return line
def parseGraph(self):
for key, value in sorted(
Counter(self.graph.row).items(), key=lambda kv: kv[1], reverse=True
):
# Start from the biggest intersections.
if value != 2: # We don't want to be in the middle of a line.
line = self.findLine(key)
# We have now all the connected points if it's an
# intersection. We need to find the line.
if value != 1:
# It's not an endpoint.
self.centers.append(key)
self.intersections.append(line)
for i in line:
line = self.findLine(i)
if i in line:
# The key is inside the result : it's a line.
alreadyInside = False
for l in self.lines:
# Verification if not already inside.
if Counter(l) == Counter(line):
alreadyInside = True
# print(line, "inside", lines)
if alreadyInside == False:
self.lines.append(line)
else:
# The key is not inside the result, it's an
# intersection directly connected to the key.
line = [key, i]
alreadyInside = False
for l in self.lines:
# Verification if not already inside.
if Counter(l) == Counter(line):
alreadyInside = True
# print(line, "inside", lines)
if alreadyInside == False:
self.lines.append(line)
def map(self):
"""
Generate an image to visualize 2D path of the skeleton.
Returns:
image: 2D path of the skeleton on top of the heightmap.
"""
editor = Editor()
buildArea = editor.getBuildArea()
buildRect = buildArea.toRect()
xzStart = buildRect.begin
xzDistance = (max(buildRect.end[0], buildRect.begin[0]) - min(buildRect.end[0], buildRect.begin[0]),
max(buildRect.end[1], buildRect.begin[1]) - min(buildRect.end[1], buildRect.begin[1]))
heightmap = Image.open("data/heightmap.png").convert('RGB')
roadsArea = Image.new("L", xzDistance, 0)
width, height = heightmap.size
# Lines
for i in range(len(self.lines)):
r, g, b = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
for j in range(len(self.lines[i])):
z = self.coordinates[self.lines[i][j]][0]
y = self.coordinates[self.lines[i][j]][1]
x = self.coordinates[self.lines[i][j]][2]
heightmap.putpixel(
(
int(z),
int(x),
),
(r + j, g + j, b + j),
)
roadsArea.putpixel(
(
int(z),
int(x),
),
(255),
)
# Centers
for i in range(len(self.centers)):
print(self.coordinates[self.centers[i]])
heightmap.putpixel(
(int(self.coordinates[self.centers[i]][0]), int(self.coordinates[self.centers[i]][2])),
(255, 255, 0),
)
roadsArea.putpixel(
(int(self.coordinates[self.centers[i]][0]), int(self.coordinates[self.centers[i]][2])),
(255),
)
# # Intersections
# for i in range(len(self.intersections)):
# intersection = []
# for j in range(len(self.intersections[i])):
# intersection.append(self.coordinates[self.intersections[i][j]])
# for i in range(len(intersection)):
# heightmap.putpixel(
# (int(self.intersections[i][2]), int(self.intersections[i][0])),
# (255, 0, 255),
# )
return heightmap, roadsArea

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.7 KiB

After

Width:  |  Height:  |  Size: 7.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 74 KiB

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

BIN
world_maker/data/test.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 122 KiB

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 KiB

After

Width:  |  Height:  |  Size: 3.6 KiB

View File

@@ -0,0 +1,182 @@
import World
from PIL import Image
from PIL import ImageFilter
import numpy as np
import networkx as nx
from scipy import ndimage
from scipy.ndimage import gaussian_gradient_magnitude
from scipy.ndimage import label
from Skeleton import Skeleton
def get_data(world: World):
heightmap, watermap, treemap = world.getData()
heightmap.save('./data/heightmap.png')
watermap.save('./data/watermap.png')
treemap.save('./data/treemap.png')
return heightmap, watermap, treemap
def filter_inverse(image: Image) -> Image:
"""
Invert the colors of an image.
Args:
image (image): image to filter
"""
return Image.fromarray(np.invert(np.array(image)))
def filter_sobel(image) -> Image:
"""
Edge detection algorithms from an image.
Args:
image (image): image to filter
"""
# Open the image
if isinstance(image, str):
image = Image.open(image).convert('RGB')
img = np.array(image).astype(np.uint8)
# Apply gray scale
gray_img = np.round(
0.299 * img[:, :, 0] + 0.587 * img[:, :, 1] + 0.114 * img[:, :, 2]
).astype(np.uint8)
# Sobel Operator
h, w = gray_img.shape
# define filters
horizontal = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) # s2
vertical = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]]) # s1
# define images with 0s
newhorizontalImage = np.zeros((h, w))
newverticalImage = np.zeros((h, w))
newgradientImage = np.zeros((h, w))
# offset by 1
for i in range(1, h - 1):
for j in range(1, w - 1):
horizontalGrad = (
(horizontal[0, 0] * gray_img[i - 1, j - 1])
+ (horizontal[0, 1] * gray_img[i - 1, j])
+ (horizontal[0, 2] * gray_img[i - 1, j + 1])
+ (horizontal[1, 0] * gray_img[i, j - 1])
+ (horizontal[1, 1] * gray_img[i, j])
+ (horizontal[1, 2] * gray_img[i, j + 1])
+ (horizontal[2, 0] * gray_img[i + 1, j - 1])
+ (horizontal[2, 1] * gray_img[i + 1, j])
+ (horizontal[2, 2] * gray_img[i + 1, j + 1])
)
newhorizontalImage[i - 1, j - 1] = abs(horizontalGrad)
verticalGrad = (
(vertical[0, 0] * gray_img[i - 1, j - 1])
+ (vertical[0, 1] * gray_img[i - 1, j])
+ (vertical[0, 2] * gray_img[i - 1, j + 1])
+ (vertical[1, 0] * gray_img[i, j - 1])
+ (vertical[1, 1] * gray_img[i, j])
+ (vertical[1, 2] * gray_img[i, j + 1])
+ (vertical[2, 0] * gray_img[i + 1, j - 1])
+ (vertical[2, 1] * gray_img[i + 1, j])
+ (vertical[2, 2] * gray_img[i + 1, j + 1])
)
newverticalImage[i - 1, j - 1] = abs(verticalGrad)
# Edge Magnitude
mag = np.sqrt(pow(horizontalGrad, 2.0) + pow(verticalGrad, 2.0))
newgradientImage[i - 1, j - 1] = mag
image = Image.fromarray(newgradientImage)
image = image.convert("L")
return image
def filter_smooth(image, radius: int = 3):
"""
:param image: white and black image representing the derivative of the terrain (sobel), where black is flat and white is very steep.
:param radius: Radius of the Gaussian blur.
Returns:
image: black or white image, with black as flat areas to be skeletonized
"""
if isinstance(image, str):
image = Image.open(image)
# image = image.filter(ImageFilter.SMOOTH_MORE)
# image = image.filter(ImageFilter.SMOOTH_MORE)
# image = image.filter(ImageFilter.SMOOTH_MORE)
image = image.convert('L')
image = image.filter(ImageFilter.GaussianBlur(radius))
array = np.array(image)
bool_array = array > 7
# bool_array = ndimage.binary_opening(bool_array, structure=np.ones((3,3)), iterations=1)
# bool_array = ndimage.binary_closing(bool_array, structure=np.ones((3,3)), iterations=1)
# bool_array = ndimage.binary_opening(bool_array, structure=np.ones((5,5)), iterations=1)
# bool_array = ndimage.binary_closing(bool_array, structure=np.ones((5,5)), iterations=1)
# bool_array = ndimage.binary_opening(bool_array, structure=np.ones((7,7)), iterations=1)
# bool_array = ndimage.binary_closing(bool_array, structure=np.ones((7,7)), iterations=1)
return Image.fromarray(bool_array)
def remove_water_from_map(image: Image) -> Image:
watermap = Image.open('./data/watermap.png').convert('L')
array_heightmap = np.array(image)
array_watermap = np.array(watermap)
mask = array_watermap == 255
array_heightmap[mask] = 0
result_image = Image.fromarray(array_heightmap)
return result_image
def group_map(image1: Image, image2: Image) -> Image:
array1 = np.array(image1)
array2 = np.array(image2)
mask = array1 == 255
array2[mask] = 255
result_image = Image.fromarray(array2)
return result_image
def highway_map() -> Image:
smooth_sobel = filter_smooth("./data/sobelmap.png", 1)
inverse_sobel = filter_inverse(smooth_sobel)
sobel_no_water = remove_water_from_map(inverse_sobel)
sobel_no_water.save("./data/test.png")
array = np.array(sobel_no_water)
array = ndimage.binary_erosion(array, iterations=10)
array = ndimage.binary_dilation(array, iterations=5)
image = Image.fromarray(array)
smooth_image = filter_smooth(image, 5)
array = np.array(smooth_image)
array = ndimage.binary_erosion(array, iterations=17)
image = Image.fromarray(array)
smooth_image = filter_smooth(image, 6)
array = np.array(smooth_image)
array = ndimage.binary_dilation(array, iterations=3)
image = Image.fromarray(array)
image.save('./data/highwaymap.png')
return image
def skeletonnize_map(map: Image):
skeleton = Skeleton()
image_array = np.array(map)
skeleton.setSkeleton(image_array)
skeleton.parseGraph()
heightmap_skeleton, roadsArea = skeleton.map()
heightmap_skeleton.save('./data/skeleton.png')
roadsArea.save('./data/roads.png')

View File

@@ -1,17 +1,10 @@
import World import World
from PIL import Image
from data_analysis import get_data, highway_map, filter_sobel, skeletonnize_map
def get_data(world: World):
heightmap, watermap, treemap = world.getData()
heightmap.save('./data/heightmap.png')
watermap.save('./data/watermap.png')
treemap.save('./data/treemap.png')
def main():
world = World.World()
get_data(world)
if __name__ == '__main__': if __name__ == '__main__':
main() #world = World.World()
#heightmap, watermap, treemap = get_data(world)
#filter_sobel("./data/heightmap.png").save('./data/sobelmap.png')
highway_map()
skeletonnize_map(Image.open('./data/highwaymap.png'))