Files
Blitz/include/blitz/maths/Maths.h
Persson-dev f78f36ffb2
All checks were successful
Linux arm64 / Build (push) Successful in 5m5s
Merge branch 'main' into physics
2024-04-13 09:02:10 +02:00

434 lines
11 KiB
C++

#pragma once
/**
* \file Maths.h
* \brief File containing mathematical functions and constants
*/
#include "blitz/maths/Vector.h"
#include <cmath>
namespace blitz {
namespace maths {
static constexpr float PI = 3.141592653f;
/**
* \return the amount of overlap between the ranges [a1 ; b1] and [a2 ; b2]
*/
template <typename T>
T RangesOverlap(T& a1, T& b1, T& a2, T& b2) {
return std::min(std::max(a1, b1), std::max(a2, b2)) - std::max(std::min(a1, b1), std::min(a2, b2));
}
/**
* \return whether the ranges [a1 ; b1] and [a2 ; b2] overlap
*/
template <typename T>
bool RangesOverlapping(T& a1, T& b1, T& a2, T& b2) {
return RangesOverlap(a1, a2, b1, b2) >= 0;
}
//////////////////////////////////////////////////////////////////
// Vectors //
//////////////////////////////////////////////////////////////////
/**
* \brief Returns the length of the vector
* \return the length of the vector
*/
template <typename T>
T Length(const Vec3<T>& vect) {
return std::sqrt(vect.x * vect.x + vect.y * vect.y + vect.z * vect.z);
}
/**
* \brief Normalizes the vector
* \return the normalized vector
*/
template <typename T>
Vec3<T> Normalize(const Vec3<T>& vect) {
T length = Length(vect);
return {vect.x / length, vect.y / length, vect.z / length};
}
/**
* \brief Normalizes the vector
* \return the normalized vector
*/
template <typename T>
Vec4<T> Normalize(const Vec4<T>& vect) {
T length = std::sqrt(vect.x * vect.x + vect.y * vect.y + vect.z * vect.z + vect.w * vect.w);
return {vect.x / length, vect.y / length, vect.z / length, vect.w / length};
}
/**
* \brief Returns the dot product of the two vectors
* \return the dot product of the two vectors
*/
template <typename T>
T Dot(const Vec3<T>& vect, const Vec3<T>& other) {
return vect.x * other.x + vect.y * other.y + vect.z * other.z;
}
/**
* \brief Returns the cross product of the two vectors
* \return the cross product of the two vectors
*/
template <typename T>
Vec3<T> Cross(const Vec3<T>& vect, const Vec3<T>& other) {
return {
vect.y * other.z - vect.z * other.y,
vect.z * other.x - vect.x * other.z,
vect.x * other.y - vect.y * other.x,
};
}
/**
* \brief Returns the dot product of the two vectors
* \return the dot product of the two vectors
*/
template <typename T>
T Dot(const Vec4<T>& vect, const Vec4<T>& other) {
return vect.x * other.x + vect.y * other.y + vect.z * other.z + vect.w * other.w;
}
/**
* \brief Returns the distance between the two vectors
* \return the distance between the two vectors
*/
template <typename T>
T Distance(const Vec3<T>& vect, const Vec3<T>& other) {
return Length(vect - other);
}
/**
* \brief Returns the minimum of the three coordinates of the vector
* \return the minimum between the three coordinates of the vector
*/
template <typename T>
T ReduceMin(const Vec3<T>& vect) {
return std::min(std::min(vect.x, vect.y), vect.z);
}
/**
* \brief Returns the maximum of the three coordinates of the vector
* \return the maximum between the three coordinates of the vector
*/
template <typename T>
T ReduceMax(const Vec3<T>& vect) {
return std::max(std::max(vect.x, vect.y), vect.z);
}
/**
* \brief Returns the (signed) minimal coordinate of the vector
* \param v a vector
* \return the (signed) minimal coordinate of the vector
*/
inline float ReduceFMinF(const Vec3f& v) {
return std::fminf(std::fminf(v.x, v.y), v.z);
}
inline Vec3f FmaF(const Vec3f& v, const Vec3f& a, const Vec3f& b) {
return {
std::fmaf(v.x, a.x, b.x),
std::fmaf(v.y, a.y, b.y),
std::fmaf(v.z, a.z, b.z),
};
}
inline Vec3d Fma(const Vec3d& v, const Vec3d& a, const Vec3d& b) {
return {
std::fma(v.x, a.x, b.x),
std::fma(v.y, a.y, b.y),
std::fma(v.z, a.z, b.z),
};
}
/**
* \brief Returns the (signed) maximal coordinate of the vector
* \param v a vector
* \return the (signed) maximal coordinate of the vector
*/
inline float ReduceFMaxF(const Vec3f& v) {
return std::fmaxf(std::fmaxf(v.x, v.y), v.z);
}
/**
* \brief returns the (signed) minimal coordinate of the vector
* \param v a vector
* \return the (signed) minimal coordinate of the vector
*/
inline double ReduceFMin(const Vec3d& v) {
return std::fmin(std::fmin(v.x, v.y), v.z);
}
/**
* \brief returns the (signed) maximal coordinate of the vector
* \param v a vector
* \return the (signed) maximal coordinate of the vector
*/
inline double ReduceFMax(const Vec3d& v) {
return std::fmax(std::fmax(v.x, v.y), v.z);
}
/**
* \brief returns the coordinate-wise minimum of the given vectors, where a coordinate in the returned vector is NAN iff any of the two
* compared ones are NAN
* \tparam T
* \param self a vector
* \param other an other vector
* \return the coordinate-wise minimum of the given vectors, where a coordinate in the returned vector is NAN iff any of the two
* compared ones are NAN
*/
template <typename T>
constexpr Vec3<T> Min(const Vec3<T>& self, const Vec3<T>& other) {
return {
std::min(self.x, other.x),
std::min(self.y, other.y),
std::min(self.z, other.z),
};
}
/**
* @brief returns the coordinate-wise minimum of the given vectors,
* where a coordinate in the returned vector is NAN iff both of the two compared ones are NAN
*
* @tparam T
* @param self
* @param other
* @return constexpr Vec3f
*/
constexpr Vec3f FMinF(const Vec3f& self, const Vec3f& other) {
return {
std::fminf(self.x, other.x),
std::fminf(self.y, other.y),
std::fminf(self.z, other.z),
};
}
/**
* @brief returns the coordinate-wise maximum of the given vectors,
* where a coordinate in the returned vector is NAN iff any of the two compared ones are NAN
*
* @tparam T
* @param self
* @param other
* @return constexpr Vec3
*/
template <typename T>
constexpr Vec3<T> Max(const Vec3<T>& self, const Vec3<T>& other) {
return {
std::max(self.x, other.x),
std::max(self.y, other.y),
std::max(self.z, other.z),
};
}
/**
* @brief returns the coordinate-wise maximum of the given vectors,
* where a coordinate in the returned vector is NAN iff both of the two compared ones are NAN
*
* @tparam T
* @param self
* @param other
* @return constexpr Vec3
*/
constexpr Vec3f FMaxF(const Vec3f& self, const Vec3f& other) {
return {
std::fmaxf(self.x, other.x),
std::fmaxf(self.y, other.y),
std::fmaxf(self.z, other.z),
};
}
/**
* @brief lane-wise copysign
*/
constexpr Vec3f CopysignF(const Vec3f& v, const Vec3f& signs) {
return {
std::copysignf(v.x, signs.x),
std::copysignf(v.y, signs.y),
std::copysignf(v.z, signs.z),
};
}
/**
* @brief lane-wise copysign
*/
constexpr Vec3d Copysign(const Vec3d& v, const Vec3d& signs) {
return {
std::copysign(v.x, signs.x),
std::copysign(v.y, signs.y),
std::copysign(v.z, signs.z),
};
}
//////////////////////////////////////////////////////////////////
// Matrices //
//////////////////////////////////////////////////////////////////
/**
* \brief Returns the dot product of the matrix and the vector
* \return the dot product of the matrix and the vector
*/
template <typename T>
Vec4<T> Dot(const Mat4<T>& mat, const Vec4<T>& vect) {
return {mat.x0 * vect.x + mat.x1 * vect.y + mat.x2 * vect.z + mat.x3 * vect.w,
mat.y0 * vect.x + mat.y1 * vect.y + mat.y2 * vect.z + mat.y3 * vect.w,
mat.z0 * vect.x + mat.z1 * vect.y + mat.z2 * vect.z + mat.z3 * vect.w,
mat.w0 * vect.x + mat.w1 * vect.y + mat.w2 * vect.z + mat.w3 * vect.w};
}
/**
* \brief Returns the dot product of the matrix and an other matrix
* \return the dot product of the matrix and the other matrix
*/
template <typename T>
Mat4<T> Dot(const Mat4<T>& mat, const Mat4<T>& other) {
Mat4<T> result{};
for (std::size_t i = 0; i < Mat4<T>::MATRIX_SIZE; i++) {
for (std::size_t j = 0; j < Mat4<T>::MATRIX_SIZE; j++) {
for (std::size_t k = 0; k < Mat4<T>::MATRIX_SIZE; k++) {
result.at(i, j) += mat.at(i, k) * other.at(k, j);
}
}
}
return result;
}
/**
* \brief Returns the identity matrix
* \return the identity matrix
*/
template <typename T>
Mat4<T> Identity() {
Mat4<T> result{};
result.x0 = static_cast<T>(1);
result.y1 = static_cast<T>(1);
result.z2 = static_cast<T>(1);
result.w3 = static_cast<T>(1);
return result;
}
/**
* \brief Returns the transposed matrix
* \return the transposed matrix
*/
template <typename T>
Mat4<T> Transpose(const Mat4<T>& mat) {
Mat4<T> result;
result.x1 = mat.y0;
result.x2 = mat.z0;
result.x3 = mat.w0;
result.y0 = mat.x1;
result.y2 = mat.z1;
result.y3 = mat.w1;
result.z0 = mat.x2;
result.z1 = mat.y2;
result.z3 = mat.w2;
result.w0 = mat.x3;
result.w1 = mat.y3;
result.w2 = mat.z3;
result.x0 = mat.x0;
result.y1 = mat.y1;
result.z2 = mat.z2;
result.w3 = mat.w3;
return result;
}
/**
* \brief Returns the perspective matrix
* \param fovY The field of view in the y direction
* \param aspectRatio The aspect ratio of the screen
* \param zNear The near clipping plane
* \param zFar The far clipping plane
* \return the perspective matrix
*/
Mat4f Perspective(float fovY, float aspectRatio, float zNear, float zFar);
/**
* \brief Returns the look matrix
* \param eyePos The position of the camera
* \param front The front vector of the camera
* \param up The up vector of the camera
* \return the look matrix
*/
Mat4f Look(const Vec3f& eyePos, const Vec3f& front, const Vec3f& up);
/**
* \brief Returns the inverse of the matrix
* \return the inverse of the matrix
*/
Mat4f Inverse(const Mat4f& mat);
/**
* \brief Returns the translation matrix
* \param translation The translation vector
* \return the translation matrix
*/
Mat4f Translate(const Vec3f& translation);
/**
* \brief Returns the scale matrix
* \param axisFactor The scaling factor for each axis
* \return the scale matrix
*/
Mat4f Scale(const Vec3f& axisFactor);
/**
* \brief Returns the rotation matrix around the x axis
* \param angle The angle of rotation
* \return the rotation matrix
*/
Mat4f RotateX(float angle);
/**
* \brief Returns the rotation matrix around the y axis
* \param angle The angle of rotation
* \return the rotation matrix
*/
Mat4f RotateY(float angle);
/**
* \brief Returns the rotation matrix around the z axis
* \param angle The angle of rotation
* \return the rotation matrix
*/
Mat4f RotateZ(float angle);
/**
* \brief Returns the rotation matrix
* \param angles The angles of rotation
* \return the rotation matrix
*/
Mat4f Rotate(const Vec3f& angles);
/**
* \brief Returns the rotation matrix
* \param angle The angle of rotation
* \param axis The axis of rotation
* \return the rotation matrix
*/
Mat4f Rotate(float angle, Vec3f axis);
/**
* \brief Returns the unit vector correspond to the yaw and pitch
* \param yaw Angle in radians
* \param pitch Angle in radians
*/
Vec3f GetDirectionVectorFromRotation(float yaw, float pitch);
} // namespace maths
} // namespace blitz